首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The overall reaction catalyzed by the pyruvate dehydrogenase complex from rat epididymal fat tissue is inhibited by glyoxylate at concentrations greater than 10 μm. The inhibition is competitive with respect to pyruvate; Ki was found to be 80 μm. Qualitatively similar results were observed using pyruvate dehydrogenase from rat liver, kidney, and heart. Glyoxylate also inhibits the pyruvate dehydrogenase phosphate phosphatase from rat epididymal fat, with the inhibition being readily detectable using 50 μm glyoxylate. These effects of glyoxylate are largely reversed by millimolar concentrations of thiols (especially cysteine) because such compounds form relatively stable adducts with glyoxylate. Presumably these inhibitions by low levels of glyoxylate had not been previously observed, because others have used high concentrations of thiols in pyruvate dehydrogenase assays. Since the inhibitory effects are seen with suspected physiological concentrations, it seems likely that glyoxylate partially controls the activity of pyruvate dehydrogenase in vivo.  相似文献   

2.
The specificities of pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase were probed using synthetic peptides corresponding to the sequence around phosphorylation sites 1 and 2 on pyruvate dehydrogenase [Tyr-His-Gly-His-Ser(P1)-Met-Ser-Asp-Pro-Gly-Val-Ser(P2)-Tyr-Arg]. The dephosphotetradecapeptide containing aspartic acid at position 8 was a better substrate for the kinase than was the tetradecapeptide containing asparagine at position 8. The apparent Km and V values for the two peptides were 0.43 and 6.1 mM and 2.7 and 2.4 nmol of 32P incorporated/min/mg, respectively. Methylation of the aspartic acid residue also increased the apparent Km of the tetradecapeptide about 14-fold. These results indicate that an acidic residue on the carboxyl-terminal side of phosphorylation site 1 is an important specificity determinant for the kinase. Phosphate was incorporated only into site 1 of the synthetic peptide by the kinase. The phosphatase exhibited an apparent Km of 0.28 mM and a V of 2.3 mumol of 32P released/min/mg for the phosphorylated tetradecapeptide containing aspartic acid. Methylation of the aspartic acid residue had no significant effect on dephosphorylation. The octapeptide and phosphooctapeptide produced by cleavage of the aspartyl-prolyl bond by formic acid were poorer substrates for the kinase and phosphatase than were the tetradecapeptide and phosphotetradecapeptide, respectively. Modification of the amino terminal by acetylation or lysine addition had only a slight effect on the kinase and phosphatase activities.  相似文献   

3.
The regulatory effects of alpha-ketoisovalerate on purified bovine heart pyruvate dehydrogenase complex and endogenous pyruvate dehydrogenase kinase were investigated. Incubation of pyruvate dehydrogenase complex with 0.125 to 10 mM alpha-ketoisovalerate caused an initial lag in enzymatic activity, followed by a more linear but inhibited rate of NADH production. Incubation with 0.0125 or 0.05 mM alpha-ketoisovalerate caused pyruvate dehydrogenase inhibition, but did not cause the initial lag in pyruvate dehydrogenase activity. Gel electrophoresis and fluorography demonstrated the incorporation of acyl groups from alpha-keto[2-14C]isovalerate into the dihydrolipoyl transacetylase component of the enzyme complex. Acylation was prevented by pyruvate and by arsenite plus NADH. Endogenous pyruvate dehydrogenase kinase activity was stimulated specifically by K+, in contrast to previous reports, and kinase stimulation by K+ correlated with pyruvate dehydrogenase inactivation. Maximum kinase activity in the presence of K+ was inhibited 62% by 0.1 mM thiamin pyrophosphate, but was inhibited only 27% in the presence of 0.1 mM thiamin pyrophosphate and 0.1 mM alpha-ketoisovalerate. Pyruvate did not affect kinase inhibition by thiamin pyrophosphate at either 0.05 or 2 mM. The present study demonstrates that alpha-ketoisovalerate acylates heart pyruvate dehydrogenase complex and suggests that acylation prevents thiamin pyrophosphate-mediated kinase inhibition.  相似文献   

4.
In human (h) pyruvate dehydrogenase complex (PDC) the pyruvate dehydrogenase (E1) is bound to the E1-binding domain of dihydrolipoamide acetyltransferase (E2). The C-terminal surface of the E1beta subunit was scanned for the negatively charged residues involved in binding with E2. betaD289 of hE1 interacts with K276 of hE2 in a manner similar to the corresponding interaction in Bacillus stearothermophilus PDC. In contrast to bacterial E1beta, the C-terminal residue of the hE1beta does not participate in the binding with positively charged residues of hE2. This latter finding shows species specificity in the interaction between hE1beta and hE2 in PDC.  相似文献   

5.
Evidence is presented that phosphopeptides produced by tryptic digestion of phosphorylated pyruvate dehydrogenase are effective substrates for pyruvate dehydrogenase phosphatase and that the dephosphopeptides can serve as substrates for pyruvate dehydrogenase kinase. These findings indicate that the phosphatase and the kinase do not require an intact tertiary structure in pyruvate dehydrogenase, but apparently recognize components of the local primary sequence around the phosphorylation sites.  相似文献   

6.
7.
We have shown that the active form of the pyruvate dehydrogenase (PDHa) component exhibits at least a 9-fold greater affinity for sites on the dihydrolipoyl transacetylase core of the pyruvate dehydrogenase complex than does the inactive (phosphorylated) form of pyruvate dehydrogenase (PDHb). Consistent with a higher rate of dissociation for PDHb than for PDHa, free PDHa rapidly replaces PDHb whereas, even at high levels, free PDHb only slowly replaces PDHa. Dissociation of newly formed PDHb, during phosphorylation by the immobile PDHa kinase, leads to an increased association of free PDHa as observed by protection against inactivation of the complex, even though PDHa kinase activity is increased.  相似文献   

8.
The fermentative mycoplasmas A. laidlawii JS, M. hyorhinis DBS-50, M. hyorhinis GDL and M. pneumoniae FH have very high apparent activities of pyruvate dehydrogenase (PDH) (EC 1.2.4.1) and pyruvate dehydrogenase complex (PDHC). Infection of normal and PDHC-deficient fibroblasts with these mycoplasma species resulted in a marked increase of the specific activity of these two enzymes, and under certain conditions could conceal the enzymatic defect. The non-fermentative mycoplasmas M. salivarium VV and M. arthritidis PG-6 have very low apparent activities of these two enzymes. Normal fibroblasts infected with non-fermentative mycoplasmas could appear as deficient in these two enzymes. The degree of interference depends on the number of mycoplasmas associated with the harvested cells. Besides the mycoplasma species, this depends (1) on the duration of infection which determines mycoplasmal titers and also can have a killing effect on both host cells and/or mycoplasmas; (2) harvest of the cells by scraping or trypsinization; (3) centrifugal force used in the collection of the cells; (4) washing and the inherent mechanical treatment; and (5) other possibilities.  相似文献   

9.
In mammalian tissues, two types of regulation of the pyruvate dehydrogenase complex have been described: end product inhibition by acetyl CoA and NADH: and the interconversion of an inactive phosphorylated form and an active nonphosphorylated form by an ATP requiring kinase and a specific phosphatase. This article is largely concerned with the latter type of regulation of the complex in adipose tissue by insulin (and other hormones) and in heart muscle by lipid fuels. Effectors of the two interconverting enzymes include pyruvate and ADP which inhibit the kinase, acetoin which activates the kinase and Ca2+ and Mg2+ which both activate the phosphatase and inhibit the kinase. Evidence is presented that all components of the pyruvate dehydrogenase complex including the phosphatase and kinase are located within the inner mitochondrial membrane. Direct measurements of the matrix concentration of substrates and effectors is not possible by techniques presently available. This is the key problem in the identification of the mechansims involved in the alterations in pyruvate dehydrogenase activity observed in adipose tissue and muscle. A number of indirect approaches have been used and these are reviewed. Most hopeful is the recent finding in this laboratory that in both adipose tissue and heart muscle, differences in activity of pyruvate dehydrogenase in the intact tissue persist during preparation and subsequent incubation of mitochondria.  相似文献   

10.
11.
Summary In Saccharomyces cerevisiae a nuclear recessive mutation, lpd1, which simultaneously abolishes the activities of lipoamide dehydrogenase, 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase has been identified. Strains carrying this mutation can grow on glucose or poorly on ethanol, but are unable to grow on media with glycerol or acetate as carbon source. The mutation does not prevent the formation of other tricarboxylic acid cycle enzymes such as fumarase, NAD+-linked isocitrate dehydrogenase or succinate-cytochrome c oxidoreductase, but these are produced at about 50%–70% of the wild-type levels. The mutation probably affects the structural gene for lipoamide dehydrogenase since the amount of this enzyme in the cell is subject to a gene dosage effect; heterozygous lpd1 diploids produce half the amount of a homozygous wild-type strain. Moreover, a yeast sequence complementing this mutation when present in the cell on a multicopy plasmid leads to marked overproduction of lipoamide dehydrogenase. Homozygous lpd1 diploids were unable to sporulate indicating that some lipoamide dehydrogenase activity is essential for sporulation to occur on acetate.  相似文献   

12.
The pyruvate dehydrogenase (E1) and acetyltransferase (E2) components of pig heart and ox kidney pyruvate dehydrogenase (PDH) complex were separated and purified. The E1 component was phosphorylated (alpha-chain) and inactivated by MgATP. Phosphorylation was mainly confined to site 1. Addition of E2 accelerated phosphorylation of all three sites in E1 alpha and inactivation of E1. On the basis of histone H1 phosphorylation, E2 is presumed to contain PDH kinase, which was removed (greater than 98%) by treatment with p-hydroxymercuriphenylsulphonate. Stimulation of ATP-dependent inactivation of E1 by E2 was independent of histone H1 kinase activity of E2. The effect of E2 is attributed to conformational change(s) induced in E1 and/or E1-associated PDH kinase. PDH kinase activity associated with E1 could not be separated from it be gel filtration or DEAE-cellulose chromatography. Subunits of PDH kinase were not detected on sodium dodecyl sulphate/polyacrylamide gels of E1 or E2, presumably because of low concentration. The activity of pig heart PDH complex was increased by E2, but not by E1, indicating that E2 is rate-limiting in the holocomplex reaction. ATP-dependent inactivation of PDH complex was accelerated by E1 or by phosphorylated E1 plus associated PDH kinase, but not by E2 plus presumed PDH kinase. It is suggested that a substantial proportion of PDH kinase may accompany E1 when PDH complex is dissociated into its component enzymes. The possibility that E1 may possess intrinsic PDH kinase activity is considered unlikely, but may not have been fully excluded.  相似文献   

13.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.  相似文献   

14.
N Papadakis  G G Hammes 《Biochemistry》1977,16(9):1890-1896
One sulfhydryl group per polypeptide chain of the pyruvate dehydrogenase component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli was selectively labeled with N-[P-(2-benzoxazoyl)phenyl]-maleimide (NBM), 4-dimethylamino-4-magnitude of-maleimidostilbene (NSM), and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) in 0.05 M potassium phosphate (pH 7). Modification of the sulfhydryl group did not alter the enzymatic activity or the binding of 8-anilino-1-naphthalenesulfonate (ANS) or thiochrome diphosphate to the enzyme. The fluorescence of the NBM or NSM coupled to the sulfhydryl group on the enzyme was quenched by binding to the enzyme of the substrate pyruvate the coenzyme thiamine diphosphate, the coenzyme analogue thiochrome diphosphate, the regulatory ligands acetyl-CoA, GTP, and phosphoenolpyruvate, and the acetyl-CoA analogue, ANS. Fluorescence energy transfer measurements were carried out for the enzyme-bound donor-acceptor pairs NBM-ANS, NBM-thiochrome diphosphate ANS-DDPM, and thiochrome diphosphate-DDM. The results indicate that the modified sulfhydryl group is more than 40 A from the active site and approximately 49 A from the acetyl-CoA regulatory site. Thus, a conformational change must accompany the binding of ligands to the regulatory and catalytic sites. Anisotropy depolarization measurements with ANS bound on the isolated pyruvate dehydrogenase in 0.05 M potassium phosphate (pH 7.0) suggest that under these conditions the enzyme is dimeric.  相似文献   

15.
Recent experimental findings on the structural--functional features of pyruvate dehydrogenase phosphatase (PDP) isolated from various sources are compared. Two alternative mechanisms (a and b) of dephosphorylation of the E1 component in the pyruvate dehydrogenase complex (PDC) are discussed: a) the reaction occurs as a result of stochastic collisions of PDP and PDC, and the generation of an enzyme--substrate complex (PDP--E1--PDC) and dephosphorylation of the E1 component occur independently at different PDP binding sites on the PDC core; b) the dephosphorylation is performed simultaneously by a certain number of PDP molecules symmetrically bound on the PDC core. The second mechanism is suggested by the self-assembly theory of multicomponent enzyme systems and can be proved by kinetic experiments. Based on self-assembly principles and data on feasible binding sites of peripheral components of the PDC, the stoichiometry and mutual location of PDP, pyruvate dehydrogenase kinase, and the E1 component on the core of mammalian PDC are postulated to provide optimal functioning of the PDC. Structural mechanisms of stimulation of PDP activity by Ca2+ and polyamines are also discussed.  相似文献   

16.
Pyruvate dehydrogenase phosphatase has been purified to apparent homogeneity from mitochondrial extracts of both beef heart and beef kidney. An essential step in this three-step purification is affinity chromatography of a largely purified phosphatase fraction using Sepharose beads to which pyruvate dehydrogenase complex is covalently bound through the lipoic acid residues of the dihydrolipoyl transacetylase component of the complex. The purified phosphatase, which has a native relative molecular mass, Mr, of about 140000, is composed of two nonidentical subunits of Mr 89000 and 49000.  相似文献   

17.
During the review period, several structures of component enzymes and domains of enzymes of this multienzyme complex were determined. Three structures of the flavoprotein component, dihydrolipoamide dehydrogenase, became available. The structure of the core component, dihydrolipoyl acetyltransferase, can in principle be constructed from the known structures of its modules: the lipoyl, the peripheral subunit-binding and the catalytic domain. Dynamic aspects, such as the structure and function of the inter-domain linkers in dihydrolipoyl acetyltransferase and the conformational changes invlved in the mechanism of electron transfer in dihydrolipoamide dehydrogenase, remain to be clarified. Although several questions concerning the structure of the individual components of the complex have been solved, there is still much to learn about the assembly pathway. In mammalian complexes, the structure and function of protein X remains something of a riddle.  相似文献   

18.
19.
Incubation of the pyruvate dehydrogenase component isolated from the pigeon breast muscle pyruvate dehydrogenase complex with Mg2+, thiamine pyrophosphate and low concentrations of pyruvic acid in the absence of electron acceptors results in irreversible time-dependent inactivation of the enzyme. The rate of the enzyme inactivation is markedly decreased in the presence of high concentrations of pyruvate; in this case acetoin and acetolactate are detected in the reaction mixture. The enzyme activity is stabilized when the artificial electron acceptor, 2,6-dichlorophenolindophenol, is present in the reaction mixture. The substrate-mediated inactivation of the enzyme is accompanied by incorporation of the 2-[14C]-substrate fragment and labelled thiamine pyrophosphate into the protein fraction. The enzyme reactivation by neutral hydroxylamine and the protective effect of dithiothreitol suggest that the SH-group(s) may be involved in the substrate-mediated inactivation of pyruvate dehydrogenase.  相似文献   

20.
1. Pyruvate dehydrogenase phosphate phosphatase activity in rat epididymal fat-pads was measured by using pig heart pyruvate dehydrogenase [32P]phosphate. About 80% was found to be extramitochondrial and therefore probably not directly concerned with the regulation of pyruvate dehydrogenase activity. The extramitochondrial activity was sensitive to activation by Ca2+, but perhaps less sensitive than the mitochondrial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号