首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free radicals are well-established transient intermediates in chemical and biological processes. Singlet oxygen, though not a free radical, is also a fairly common reactive chemical species. It is rare that singlet oxygen is studied with the electron spin resonance (ESR) technique in biological systems, because there are few suitable detecting agents. We have recently researched some semiquinone radicals. Specifically, our focus has been on bipyrazole derivatives, which slowly convert to semiquinone radicals in DMSO solution in the presence of potassium tert-butoxide and oxygen. These bipyrazole derivatives are dimers of 3-methyl-1-phenyl-2-pyrazolin-5-one and have anti-ischemic activities and free radical scavenging properties. In this work, we synthesized a new bipyrazole derivative, 4,4'-bis(1p-carboxyphenyl-3-methyl-5-hydroxyl)-pyrazole, DRD156. The resulting semiquinone radical, formed by reaction with singlet oxygen, was characterized by ESR spectroscopy. DRD156 gave no ESR signals from hydroxyl radical, superoxide, and hydrogen peroxide. DRD156, though, gives an ESR response with hypochlorite. This agent, nevertheless, has a much higher ability to detect singlet oxygen than traditional agents with the ESR technique.  相似文献   

2.
1,3-Diphenylisobenzofuran (DPBF) has been developed as a selective probe for the detection and quantitative determination of hydrogen peroxide in samples containing different reactive nitrogen and oxygen species (RNOS). DPBF is a fluorescent probe which, for almost 20 years, was believed to react in a highly specific manner toward some reactive oxygen species (ROS) such as singlet oxygen and hydroxy, alkyloxy or alkylperoxy radicals. Under the action of these individuals DPBF has been rapidly transformed to 1,2-dibenzoylbenzene (DBB). In order to check if DPBF can act as a unique indicator of the total amount of different RNOS, as well as oxidative stress caused by an overproduction of these individuals, a series of experiments was carried out, in which DPBF reacted with peroxynitrite anion, superoxide anion, hydrogen peroxide, hypochlorite anion, and anions commonly present under biological conditions, namely nitrite and nitrate. In all cases, except for hydrogen peroxide, the product of the reaction is DBB. Only under the action of H2O2 9-hydroxyanthracen-10(9H)-one (oxanthrone) is formed. This product has been identified with the use of fluorescence spectroscopy, NMR spectroscopy, high performance liquid chromatography coupled with mass spectrometry, infrared spectroscopy, elemental analysis, and cyclic voltammetry (CV). A linear relationship was found between a decrease in the fluorescence intensity of DPBF and the concentration of hydrogen peroxide in the range of concentrations of 0.196–3.941?mM. DPBF responds to hydrogen peroxide in a very specific way with the limits of detection and quantitation of 88 and 122.8?μM, respectively. The kinetics of the reaction between DBBF and H2O2 was also studied.  相似文献   

3.
Although it is assumed from in vitro experiments that the generation of reactive oxygen species such as the singlet oxygen (1O2), the hydroxyl radical, and the superoxide anion are responsible for chromium(VI) toxicity/carcinogenicity, no electron spin resonance (ESR) evidence for the generation of 1O2 in vivo has been reported. In this study, we have employed an ESR spin-trapping technique with 2,2,6,6-tetramethyl-4-piperidone (TMPD), a specific 1O2 trap, to detect 1O2 in blood. The ESR spectrum of the spin adduct observed in the blood of mice given 4.8 mmol Cr(VI)/kg body weight exhibited the 1:1:1 intensity pattern of three lines with a hyperfine coupling constant A(N) = 16.08 G and a g-value = 2.0066. The concentration of spin adduct detected in the blood was 1.46 microM (0.1% of total Cr concentration). The adduct production was inhibited by the addition of specific 1O2 scavengers such as 1,4-diazabicyclo[2.2.2]octane and sodium azide to the blood. The results indicate that the spin adduct is nitroxide produced by the reaction of 1O2 with TMPD. This is the first report of ESR evidence for the in vivo generation of 1O2 in mammals by Cr(VI).  相似文献   

4.
The chloroaluminum phthalocyanine tetrasulfonate sensitized photooxidation of ascorbic acid to ascorbate radical (A.-) was followed by electron spin resonance (ESR) spectroscopy. In air saturated aqueous media, steady-state amounts of A.- are rapidly established upon irradiation. The ESR signal disappears within a few seconds after the light is extinguished--more slowly under constant irradiation as oxygen is depleted. No photooxidation was observed in deaerated media. The effect of added superoxide dismutase, catalase, desferrioxamine, and singlet oxygen scavengers (NaN3 and tryptophan) was studied, as was replacement of water by D2O and saturation with O2. The results are indicative of free radical production by direct reaction between ascorbate ion and sensitized phthalocyanine (a Type I mechanism) in competition with the (Type II) reaction of HA- with singlet oxygen, a reaction which does not produce ascorbate radical intermediates.  相似文献   

5.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (?OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of ?OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its ?OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of ?OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of ?OH from 1O2, and that spin trap-mediated ?OH generation hardly occurs with DEPMPO.  相似文献   

6.
目的:通过电子顺磁自旋共振技术(ESR)动态观察大鼠在过热条件下肝脏的氧化还原状态.方法:将52只雄性Wistar大鼠随机分成4组:①加温组:麻醉后进行整体加温到直肠温达(43.0±0.5)℃,持续15 min;②对照组:只进行麻醉处理;③,MPG预处理组:用抗氧化剂MPG预处理后,再进行与上述①同样条件的加温处理;④非MPG预处理组:在③中用生理盐水代替MPG.经过以上处理后在不同时间点取肝脏制备组织匀浆,测定ESR波谱.结果:与对照组比较,加温组热暴露处理后记录的ESR波谱振幅-时间直线斜率增大,2 h达最大值.以后逐渐恢复,24 h接近对照组水平.经抗氧化剂预处理上述反应减弱.结论:过热能诱导肝脏产生活性氧,增强其氧化还原反应.  相似文献   

7.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (•OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of •OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its •OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of •OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of •OH from 1O2, and that spin trap-mediated •OH generation hardly occurs with DEPMPO.  相似文献   

8.
To simulate single gene retrieval from ancient DNA, several related factors have been investigated. By monitoring a 889 bp polymerase chain reaction (PCR) product and genomic DNA degradation, we find that heat and oxygen (especially heat) are both crucial factors influencing DNA degradation. The heat influence, mainly represented by temperature and heating time, affects the DNA degradation via DNA depurination followed by cleavage of nearby phosphodiesters. The heating time influence is temperature-dependent. By reactive oxygen species (ROS) scavenging and 1,3-diphenyl-isobenzofuran (DPBF) bleaching experiments the influence of oxygen on DNA thermal degradation was shown to occur via a singlet oxygen pathway. A comparative study of the thermal degradation of cellular DNA and isolated DNA showed that cellular lipids can aggravate DNA thermal degradation. These results confirm the possibility of gene amplification from thermally degraded DNA. They can be used to evaluate the feasibility of the retrieval of single gene from ancient remains.  相似文献   

9.
The chemiluminescence (CL) phenomena of lanthanide (Ln) ions and their coordinate complexes in peroxomonosulfate system and the energy transfer mechanism during the process were investigated in this work. A strong and sharp CL signal was yielded when the Eu(III) or Tb(III) solution was added to the peroxymonosulfate solution. The CL intensity was greatly enhanced by 2,6‐pyridinedicarboxylic acid (DPA) ligand [maximum enhancement reached when Ln(III):DPA was 1:1] and hexadecyltrimethylammonium chloride micelles. The degree of enhancement of DPA and micelles on Ln(III) CL was related to the fluorescence lifetimes of Ln(III) in different media. According to the ESR spin‐trapping experiments of 2,2,6,6‐tetramethyl‐4‐piperidone and the specific quenching experiments of 1,4‐diazabicyclo[2.2.2]octane and sodium azide, singlet oxygen was generated though the Ln(III) ion‐catalyzed decomposition of peroxymonosulfate. From the comparisons of the fluorescence and CL spectra, lanthanide ions were the luminescence emitter and the ligand DPA absorbed the energy from singlet oxygen and transferred it to Ln(III) ions in the coordinate complexes. Micelles can enhance the CL intensity by improving intermolecular energy transfer efficiencies, removing the quenching effect of water and prolonging the lifetime of singlet oxygen. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
NAO is a natural water soluble antioxidant that was isolated and purified from spinach leaves. Using HPLC, NMR, and CMR spectroscopy, the main components were identified as flavonoids and p-coumaric acid derivatives. The NAO was found to be a very effective antioxidant in several in vivo and in vitro biological systems. In the present study, the antioxidant activity of the novel antioxidant glucurinated flavonoid (GF) isolated and characterized from NAO, is compared to well-known antioxidants. In addition, the direct free radical scavenging properties of the purified component GF were studied using the electron spin resonance (ESR) technique. GF and NAO were found to be superior to EGCG and NAC and to the Vitamin E homologue Trolox in inhibiting reactive oxygen species (ROS) formation in the autooxidation system of linoleic acid and in fibroblasts exposed to metal oxidation. GF and NAO were found to inhibit the ESR signal intensity of DMPO-O(2) radical formation during the riboflavin photodynamic reaction. 10 mM GF caused approximately 90% inhibition in the intensity of the ESR signal, while NAO at a concentration of 60 microg/ml caused an inhibition of about 50%. Using the Fenton reaction, GF and NAO were found to inhibit DMPO-OH radical formation. A concentration of 2 mM GF caused a 70% inhibition in the intensity of the DMPO-OH radical ESR signal, while propyl gallate at the same concentration caused only 50% inhibition. Furthermore, both GF and NAO also inhibited the (1)O(2) dependent TEMPO radical generated in the photoradiation TPPS4 system. About 80% inhibition was obtained by 4 mM GF. The results obtained indicate that the natural antioxidants derived from spinach may directly affect the scavenging of ROS and, as a consequence, may be considered as effective sources for combating oxidative damage.  相似文献   

11.
Reactivities of chromium compounds with DNA were investigated by the DNA sequencing technique using 32P 5'-end-labeled DNA fragments, and the reaction mechanism was investigated by ESR spectroscopy. Incubation of double-stranded DNA with sodium chromate(VI) plus hydrogen peroxide or potassium tetraperoxochromate(V) led to the cleavage at the position of every base, particularly of guanine. Even without piperidine, the formation of oligonucleotides was observed, suggesting the breakage of the deoxyribose-phosphate backbone. ESR studies using hydroxyl radical traps demonstrated that hydroxyl radical is generated both during the reaction of sodium chromate(VI) with hydrogen peroxide and the decomposition of potassium tetraperoxochromate(V), and that hydroxyl radical reacts significantly not only with mononucleotides but also with deoxyribose 5-phosphate. ESR studies using a singlet oxygen trap demonstrated that singlet oxygen is also generated both by the same reaction and decomposition, and reacts significantly with deoxyguanylate, but scarcely reacts with other mononucleotides. Furthermore, ESR studies suggested that tetraperoxochromate(V) is formed by the reaction of sodium chromate(VI) with hydrogen peroxide. These results indicate that sodium chromate(VI) reacts with hydrogen peroxide to form tetraperoxochromate(V), leading to the production of the hydroxyl radical, which causes every base alteration and deoxyribose-phosphate backbone breakage. In addition, sodium chromate(VI) plus hydrogen peroxide generates singlet oxygen, which subsequently oxidizes the guanine residue. The mechanism by which both hydroxyl radical and singlet oxygen are generated during the reaction of sodium chromate(VI) with hydrogen peroxide was presented. Finally, the possibility that this reaction may be one of the primary reactions of carcinogenesis induced by chromate(VI) is discussed.  相似文献   

12.
Nitrosoderivatives of the nitrodiphenyl ether herbicides (nitrofen, bifenox) have been studied. UV irradiation in different organic solvents gives degradation products. In buffered aqueous media, in the presence of chloroplasts and spin traps such as DMPO, hydroxy and peroxy radicals have been characterized.

In organic media and in the presence of spin traps such as DMPO, PBN, 4-POBN, solvent radicals (CHCIl2, CCI3, CH2O) have been formed.

Nitro-derivatives have been studied under UV irradiation and in the presence of tetramethylethylene (TME), alkenylhydroxylamines are formed which autoxidize in nitroxide radicals. The formation of the stable nitroxide radical occurs in the dark process after continuous irradiation. The intensity of the signal decreases strongly when a new irradiation is applied. Radical species, with analogous ESR spectral characteristics are formed on reaction with nitrodiphenyl ethers and fatty acids.

The reactivity of these herbicides in micellar media (SDS, Brij 35, and CTAB) has been investigated. The kinetics of formation of the ESR signal corresponding to the photoreduction of the nitrodiphenyl ether in the presence of TME behave differently in a micellar environment as compared to solution. The intensity of the formation of the nitroxide increases under irradiation and decreases in the dark; the rotational correlation time tc has been determined for each type of micelle.

Synthetic nitrosodiphenyl ether made by the reduction of nitrodiphenyl ether using hydrogen gas and PtO2 as a catalyst gives the corresponding amine, which is oxidized with rneta-chloroperbenzoic acid (m.CPBA). The nitrosodiphenyl ether in the presence of soja azolectin liposorne containing a fluorescent probe has been analysed. When this synthetic nitrosodiphenyl ether is added to a medium containing soja azolectin liposomes and a carboxyfluorescein, fluorescent probe placed inside the liposornes, a rapid increase in the fluorescence of the medium is observed. The nitrosodiphenyl ether induce a break in the liposorne membrane.  相似文献   

13.
Exposure of isolated spinach thylakoids to high intensity illumination (photoinhibition) results in the well-characterized impairment of Photosystem II electron transport, followed by degradation of the D1 reaction centre protein. In the present study we demonstrate that this process is accompanied by singlet oxygen production. Singlet oxygen was detected by EPR spectroscopy, following the formation of stable nitroxide radicals from the trapping of singlet oxygen with a sterically hindered amine TEMP (2,2,6,6-tetramethylpiperidine). There was no detectable singlet oxygen production during anaerob photoinhibition or in the presence of sodium-azide. Comparing the kinetics of the loss of PS II function and D1 protein with that of singlet oxygen trapping suggests that singlet oxygen itself or its radical product initiates the degradation of D1.Abbreviations HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonle acid - PS Photosystem - TEMP 2,2,6,6-tetramethylpiperidine - TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl  相似文献   

14.
The generation of singlet molecular oxygen ((1)O(2)) and hydroxyl radicals (HO*) during peroxidation of bopindolol in the presence of Co(II) ions was studied using electron spin resonance (ESR) and spectrophotometry methods. 2,2,6,6-Tetramethyl-4-piperidone and 5,5-dimethyl-1-pyrroline-1-oxide were used as traps. The spectrophotometry determination of (1)O(2) was based on bleaching of p-nitrosodimethylaniline (RNO), which was caused by the product of the reaction of (1)O(2) with imidazole and was followed by monitoring the decrease in optical density at 440 nm. The effect of (1)O(2) quenchers and oxygen free radical scavengers on the ESR signal and the bleaching of RNO was studied. The data presented here give new evidence for generation of the reactive oxygen species during peroxidation of bopindolol.  相似文献   

15.
Bilirubin in an alkaline solution exhibits a weak chemiluminescence (CL) under aerobic conditions. This spontaneous CL was markedly enhanced by the addition of various aldehydes. The fluorescent emission spectrum of bilirubin, excited by weak intensity light at 350 nm, coincided with its CL emission spectrum (peak at 670 nm). CL emission from bilirubin was not quenched by active oxygen scavengers. This suggests that triplet oxygen reacts with bilirubin, and forms an oxygenated intermediate (hydroperoxide) as a primary emitter (oxidative scission of tetrapyrrole bonds in bilirubin is not involved in this CL). The Ehrlich reaction (test for monopyrroles) and hydrolsulphite reaction (test for dipyroles) on the CL reaction mixture and unreacted bilirubin showed no differences. When the CL was initiated by singlet oxygen, rather than superoxide anion, monopyrrole, was detected in the reaction products by gel chromatography. The inhibitory effect of a scavenger of singlet oxygen on CL was eliminated in the presence of formaldehyde. Therefore, triplet carbonyl, formed by singlet oxygen through the dioxetane structure in bilirubin, is not an emitter. The reaction mechanism of bilirubin CL and the formation of a hydroperoxide intermediate is discussed in relation to the chemical structure of luciferin molecules from bioluminescent organisms.  相似文献   

16.
It is thought that direct quenching of singlet oxygen and scavenging free radicals by macular pigment carotenoids is a major mechanism for their beneficial effects against light-induced oxidative stress. Corresponding data from human tissue remains unavailable, however. In the studies reported here, electron paramagnetic resonance (EPR) spectroscopy was used to measure light-induced singlet oxygen generation in post-mortem human macula and retinal pigment epithelium/choroid (RPE/choroid). Under white-light illumination, production of singlet oxygen was detected in RPE/choroid but not in macular tissue, and we show that exogenously added macular carotenoids can quench RPE/choroid singlet oxygen. When the singlet oxygen quenching ability of the macular carotenoids was investigated in solution, it was shown that a mixture of meso-zeaxanthin, zeaxanthin, and lutein in a ratio of 1:1:1 can quench more singlet oxygen than the individual carotenoids at the same total concentration.  相似文献   

17.
Mitochondrial swelling induced by 2,3-bis(chloromethyl)-1,4-naphthoquinone (CMNQ) was found to be a non-energy linked, oxygen and sulfhydryl-dependent, substrate-independent, osmotic process, that lacks cation specificity. Swelling was inhibited by cysteine and DTNB, and the CMNQ induced swelling resulted in a decrease in mitochondrial reactive sulfhydryl groups; thus, mitochondrial sulfhydryl interaction was mandatory in the CMNQ swelling process. The non-enzymatic reaction of CMNQ with cysteine but not cystine resulted in the consumption of oxygen, implicating sulfhydryl redox activity in the swelling process. High levels of tocopherol and histidine depressed the CMNQ induced swelling, suggesting that free radicals and singlet oxygen are important in the CMNQ induced swelling process.These findings support the proposition that CMNQ interacts with mitochondrial reductase systems and sulfhydryl groups in such a way as to generate superoxide radical which subsequently may dismute to H2O2 and produce ·OH and possibly singlet oxygen. These toxic oxygen species may be responsible for the CMNQ-promoted sulfhydryl depletion and mitochondrial swelling.  相似文献   

18.
The radicals generated by adriamycin-sensitive (CHO-AB) and adriamycin-resistant (CHO-C5) Chinese hamster ovary cells as well as by adriamycin-sensitive and -resistant human breast cancer cells (MCF7-WT and MCF7-ADR) have been studied with spin-trapping and ESR spectroscopy. During anoxic exposure to adriamycin (ADR) both pairs of cell lines produced the broad ESR singlet characteristic of ADR semiquinone (AQ.). By use of tris(oxalato)chromate (CrOx) as an extracellular line-broadening agent, the distribution of AQ. between the intra- and extracellular compartments was studied. For cell densities of (1-3) X 10(7) cells/mL, CrOx eliminated most, though not all, of the ESR signal, indicating that the AQ. radicals freely diffuse and partition between the intra- and extracellular compartments proportionally to their respective volumes. Similar behavior was exhibited by all four cell lines studied. Upon introduction of oxygen to anoxic cells in the presence of the spin trap 5,5-dimethylpyrroline N-oxide (DMPO), the AQ. signal was replaced by that of the DMPO-OH spin adduct. Metal chelators such as desferrioxamine had no effect on DMPO-OH or AQ. formation. Superoxide dismutase, not catalase, totally eliminated the ESR signal, indicating that DMPO-OH produced by ADR-treated cells originates from superoxide rather than from .OH produced from H2O2. In the presence of CrOx, the DMPO-OH signal was not distinguishable from the background noise, thus excluding any contribution to the signal by intracellular spin adducts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Photodynamic modification of DNA by hematoporphyrin (Hp) was characterized by the DNA sequencing technique using 32P-labeled DNA fragments, and the reaction mechanism was investigated by ESR spectroscopy. Mild photodynamic treatment of single-stranded DNA with Hp induced an alteration of guanine residues, and subsequent treatment with piperidine led to chain cleavages at each guanine residue. On the other hand, methylene blue plus light modified the guanine residues in both single-stranded and double-stranded DNA. ESR studies using 2,2,6,6-tetramethylpiperidine and 2,2,6,6-tetramethyl-4-piperidone as singlet oxygen traps demonstrated that Hp plus light produced almost the same amount of singlet oxygen as methylene blue plus light and that the photochemically generated singlet oxygen reacts significantly with guanylate but only slightly with other mononucleotides. An ESR spin destruction method revealed that photoexcited Hp generated porphyrin radical, but guanylate did not react with this radical. These results indicate that photoexcited Hp reacts with oxygen to generate singlet oxygen which oxidizes the guanine residues of single-stranded DNA and that the difference in photoreactivities of DNA with Hp and methylene blue may be explained in terms of the structural difference in their intercalating abilities.  相似文献   

20.
The kinetics of the singlet oxygen production in the hydrogen peroxide plus hypochlorous acid reaction were studied by measuring the time course of the singlet oxygen emission at 1268 nm. The addition of 1,4-diazabicyclo[2.2.2]octane (DABCO) increased the peak intensity of the chemiluminescence, but decreased its duration. The increased rate of singlet oxygen production likely accounts for the enhancement of singlet oxygen dimol emission reported in 1976 by Deneke and Krinsky (J. Am. Chem. Soc. 98, 3041-3042). This phenomenon was not seen when singlet oxygen was generated with the reaction of hypobromous acid and hydrogen peroxide. Thus, the enhancement of red chemiluminescence by DABCO should not be regarded as a general test for the production of singlet oxygen in complex biochemical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号