首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated alveolar epithelial type II cells were exposed to paraquat and to hyperoxia by gas diffusion through the thin Teflon bottom of culture dishes. After exposure, type II cells were further incubated in the presence of labelled substrates to assess their capacity to synthesize lipids. Hyperoxia alone (90% O2; 5 h) had minor effects on lipid metabolism in the type II cells. At low paraquat concentrations (5 and 10 microM), hyperoxia enhanced the paraquat-induced decrease of [Me-14C]choline incorporation into phosphatidylcholines. The incorporation rates of [Me-14C]choline, [1-14C]palmitate, [1-14C]glucose and [1,3-3H]glycerol into various phospholipid classes and neutral lipids were decreased by paraquat, depending on the concentration and duration of the exposure. The incorporation of [1-14C]acetate into phosphatidylcholines, phosphatidylglycerols and neutral lipids appeared to be very sensitive to inactivation by paraquat. At 5 microM-paraquat the rate of [1-14C]acetate incorporation was decreased to 50% of the control values. The rate of [1-14C]palmitate incorporation into lipids was much less sensitive; it even increased at low paraquat concentrations. At 10 microM-paraquat both NADPH and ATP were significantly decreased. It is concluded that lipid synthesis in isolated alveolar type II cells is extremely sensitive to paraquat. At low concentrations of this herbicide, lipid synthesis, and particularly fatty acid synthesis, is decreased. The effects on lipid metabolism may be partly related to altered NADPH and ATP concentrations.  相似文献   

2.
The uptake of [U-14C]glucose and [2-14C]acetate into lipids was measured in brain slices from anoxic, unilaterally ischaemic, unilaterally anoxic-ischaemic, and control rats. The rate of incorporation was significantly decreased in the brain slices from the treated animals except for the contralateral hemisphere of the unilaterally ischaemic animals. Also, there was no significant difference between the anoxic and the anoxic-ischaemic cerebral hemispheres of the anoxic-ischaemic animals. Fractionation of the total lipid extract demonstrated that the decrease in incorporation was general and not due to any particular class of lipid.  相似文献   

3.
—The oxidation to CO2 and the incorporation of [U-14C]glucose and [U-14C]acetate into lipids by cortex slices from rat brain during the postnatal period were investigated. The oxidation of [U-14C]glucose was low in 2-day-old rat brain, and increased by about two-fold during the 2nd and 3rd postnatal weeks. The oxidation of [U-14C]acetate was increased markedly in the second postnatal week, but decreased to rates observed in 2-day-old rat brain at the time of weaning. Both labeled substrates were readily incorporated into non-saponifiable lipids and fatty acids by brain slices from 2-day-old rat. Their rates of incorporation and the days on which maximum rates occurred were different, however, maximum incorporation of [U-14C]glucose and [U-14]acetate into lipid fractions being observed on about the 7th and 12th postanatal days, respectively. The metabolic compartmentation in the utilization of these substrates for lipogenesis is suggested. The activities of glucose-6-phosphate dehydrogenase, cytosolic NADP-malate dehydrogenase, cytosolic NADP-isocitrate dehydrogenase, ATP-citrate lyase and acetyl CoA carboxylase were measured in rat brain during the postnatal period. All enzymes followed somewhat different courses of development; the activity of acetyl CoA carboxylase was, however, the lowest among other key enzymes in the biosynthetic pathway, and its developmental pattern paralleled closely the fatty acid synthesis from [U-14C]glucose. It is suggested that acetyl CoA carboxylase is a rate-limiting step in the synthesis de novo of fatty acids in developing rat brain.  相似文献   

4.
We examined changes in biosynthetic capacity of sciatic nerve during the early stages of Wallerian degeneration, utilizing a model that permits exclusion of nonresident cells from degenerating nerve. Sciatic nerve segments were placed in either 5-microns pore (allowing infiltration of nonresident cells) or 0.22-microns pore (excluding nonresident cells) Millipore diffusion chambers and then implanted in the peritoneal cavity of the same 32-34-day-old rat. At times up to 7 days postsurgery, nerve segments from the chambers, as well as control segments from the contralateral sciatic nerve, were removed and their capacity to incorporate radioactive precursors into lipids and proteins assayed in vitro. In nerve segments from both the 0.22- and 5-microns pore chambers, incorporation of [14C]acetate into total lipids was decreased relative to control by 50% at 12 h postsurgery and by 85% at day 3. This decreased incorporation of [14C]acetate reflects primarily decreased de novo synthesis of cholesterol and of fatty acyl residues incorporated into glycerolipids and sphingolipids. There was a preferentially decreased synthesis of cerebrosides and cholesterol (components enriched in myelin) relative to other lipids, while cholesterol esters and free fatty acids (products of membrane degradation) accounted for a greater proportion of the greatly reduced levels of total lipid label. In contrast to [14C]acetate, incorporation of [3H]glycerol into lipids was increased up to fourfold, relative to control, 1 day after nerve transection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Inclusion of 1.1% elemental tellurium in the diet of postweanling rats produces a peripheral neuropathy due to a highly synchronous primary demyelination of sciatic nerve; this demyelination is followed closely by remyelination. Sciatic nerves from animals fed tellurium for various times were removed and incubated ex vivo for 1 h with [14C]acetate, and radioactivity incorporated into individual lipid classes was determined. In nerves from rats exposed to tellurium, there was a profound and selective block in the conversion of radioactive acetate to cholesterol. Another radioactive precursor, [3H]water, gave similar results. We suggest that tellurium feeding inhibits squalene epoxidase activity and that the consequent lack of cholesterol destabilizes myelin, thereby causing destruction of the larger internodes. Ex vivo incubation experiments were also carried out with liver slices. As with nerve, tellurium feeding caused accumulation in squalene of label from radioactive acetate, whereas labeling of cholesterol was greatly inhibited. Unexpectedly, however, incorporation of label from [3H]water into both squalene and cholesterol was increased. Relevant is the demonstration that liver was the primary site of bulk accumulation of squalene, which accounted for 10% of liver dry weight at 5 days. Thus, accumulation of squalene (and other mechanisms, possibly including up-regulation of cholesterol biosynthetic pathways) drives squalene epoxidase activity at normal levels in liver even in the presence of inhibitors of this enzyme. This is reflected by continuing incorporation of [3H]water into cholesterol; incorporation of this precursor takes place at many of the postsqualene biosynthetic steps for sterol formation. [14C]Acetate entering the sterol pathway before squalene in liver is greatly diluted in specific activity when it reaches the large squalene pool, and thus increased squalene epoxidase activity does not transfer significant 14C label to sterols. In contrast to the situation with liver, synthesis of sterols is markedly depressed in sciatic nerve, and squalene does not accumulate to high levels.  相似文献   

6.
Phospholipid synthesis in aging potato tuber tissue   总被引:9,自引:8,他引:1       下载免费PDF全文
The effect of activation (“aging”) of potato tuber slices on their phospholipid metabolism was investigated. Aged slices were incubated with 14C labeled choline, ethanolamine, methionine, serine, and acetate. In all cases, the incorporation of radioactivity into the lipid fraction increased with the length of time the slices were aged. This incorporation was shown to be true synthesis and not exchange between precursors and existing phospholipids.

The increased incorporation of labeled choline into lipids was mainly due to an increase in its uptake by the tissue, the presence of actidione during aging prevented this increased uptake. The increase in the incorporation of labeled acetate into lipids resulted from the development of a fatty acid synthetase during aging. In the case of ethanolamine, both its uptake into the tissue and its incorporation into the lipid fraction increased.

The phospholipids formed from these precursors were identified by paper and thin-layer chromatography. The major compound formed from choline was lecithin, while phosphatidylethanolamine and a small amount of lecithin were formed from ethanolamine.

  相似文献   

7.
A survey of differences in composition and metabolism of myelin from five areas of the central nervous system was made in brain and spinal cord slices of the rat from 20 days to 20 months postnatal age. Purified myelin from the forebrain areas showed a composition characteristic of immaturity longer than did myelin from the hindbrain and spinal cord. The trend of chemical maturity is in agreement with the anatomical observations that myelination begins in the hindbrain and proceeds rostrally. Myelin recovery per 100-mg slice increased continually from 20 days to 20 months of age, while the uptake of [1-(14)C]acetate into myelin lipid and of [1-(14)C]leucine into myelin protein decreased precipitously with age. Taking into account the continuous increase in myelin during maturation, a calculation was made of the total amount of incorporation of labeled material into lipids or proteins per 100-mg slice for each region at each age. The metabolic characteristics of myelin from the cerebral cortex (including the corpus callosum), the thalamic area, and the cerebellum were very similar, while myelin from brainstem and spinal cord was metabolically more active, especially at the early ages. Synthesis of lipid in the myelin sheath represents about 50% of the lipid synthesis of the whole brain and about 75% of that of the spinal cord. The proportion of myelin-related protein synthesis is much less, probably less than 10% of the protein synthesis occurring in whole brain and about 15% of that in the spinal cord except at early ages.  相似文献   

8.
The synthesis of lipids and their assembly into subcellular membrane fractions of the myelin deficient Quaking mutant and control brains was studied in 18-, 24- and 41-day-old animals using a double label methodology with14C and 3H acetate as precursors. As a general procedure, Quaking mutants were injected intracranially with 50 μCi [14C]acetate and their littermate controls with 300 μCi [3H]acetate. The animals were killed 3 h post-injection, their brains were pooled and subcellular fractions prepared from the common homogenate. An 80-90% decrease in the incorporation of acetate into eleven lipids of myelin in the Quaking mutant was found. This occurred in the face of apparent normal incorporation (relative to microsomes) into lipids of the other main subcellular fractions (nuclear. mitochondrial and synaptosomal) with the exception of decreased incorporation into the myelin-like fraction at 18 and 24 days. Cholesterol and cerebroside were less readily incorporated into Quaking myelin than the other lipids. Although the microsomal synthesis of cholesterol and cerebroside was depressed by about 30% in the Quaking mutant, the incorporation of cholesterol into nuclear, synaptosomal and mitochondrial fractions was unaffected in the mutant. This indicates that sufficient cholesterol is synthesized for the normal assembly of these organelles. In contrast the incorporation of acetate into cholesterol and cerebroside of Quaking myelin was decreased much more than microsomal synthesis. This latter result is consistent with a defect in the process of myclin membrane assembly  相似文献   

9.
Chick embryo liver cells, when cultured for 41 h in the presence of [2-14C]mevalonic acid, took up label and incorporated radioactivity into heme a, but not into protoheme. Incubation of cells with delta-[4-14C]aminolevulinic acid (ALA) resulted in uptake of label and incorporation of radioactivity into both protoheme and heme a. These results show that both protoheme and heme a are synthesized during the incubation period, and that mevalonic acid is a specific precursor of the farnesyl moiety of heme a. Incubation of cells with [1,2-14C]acetate plus N-methyl mesoporphyrin IX, an inhibitor of heme synthesis, resulted in negligible incorporation of label into protoheme and heme a, although cellular lipids were highly labeled. This result indicates that the heme purification methods employed were capable of separating hemes from lipids, and that the measured incorporation of label into hemes from [14C]mevalonic acid and [14C]ALA was not due to lipid contamination.  相似文献   

10.
The [1-14C]acetate incorporation into different lipid subclasses by the rat prostate gland was lineal between 20 and 80 mg of wet tissue. The in vitro [1-14C]acetate incorporation into lipid subclasses was a development-dependent process. The highest values of [1-14C]acetate incorporation into triacylglycerols, free cholesterol and esterified cholesterol were observed at puberty, but radioactivity incorporation into phospholipids was similar in both prepuberty and puberty, then decreasing in maturity. The relationship between triacylglycerols, free cholesterol and esterified cholesterol with respect to total lipids was about 12, 10 and 3.5%, respectively, values being maintained during the animal development. The in vitro [1-14C]acetate incorporation into lipid subclasses in castrated rats decreased considerably as compared with normal rats.  相似文献   

11.
Eleven isolates of varicella-zoster virus were tested for their effects on the incorporation of [14C]acetate into lipids in infected human embryonic lung cells. By relative percent, all virus isolates demonstrated a shift from polar lipid synthesis to neutral lipid, especially triglyceride, synthesis. By data expressed as counts per minute per microgram of protein, the VZV strains could be separated into two groups: those strains which depressed lipid synthesis and those strains which did not depress, and may even have stimulated, lipid, especially triglyceride, synthesis. These results may be useful in understanding the development of lipid changes seen in children affected with Reye's syndrome following chickenpox.  相似文献   

12.
Slices of rabbit cerebral cortex, from the foetal stage to the adult have been used to compare lipid synthesis from fatty acids synthesized de novo from [U-14C]glucose and [1-14C]acetate, with lipid synthesis from exogenous albumin-bound [1-14C]palmitate. Incorporation into cellular lipid has been determined in terms of DNA, protein, wet wt. of tissue and wet weight of whole brain. On a wet wt. basis, maximum incorporation of glucose carbon into lipid occurred in the foetal brain while lipid synthesis from acetate and palmitate was maximum at 4–14 days after birth. Glucose and acetate were incorporated into a diversity of lipids (with increasing amounts of phosphatidylcholine synthesized during maturation), while palmitate was incorporated into the free fatty acid and triglyceride fractions. A greater proportion of acetate was incorporated into fatty acids of chain-length longer than C16 compared with the incorporation of palmitate. However, on a molar basis de novo synthesized and exogenous palmitate were elongated, desaturated and incorporated into phospholipids at a similar rate, while exogenous palmitate was incorporated to a greater extent than de nova synthesized fatty acid into the triglyceride fraction. This difference in metabolism may be due to the different size of the non-esterified fatty acid pool in the two situations. At the period of their most active formation, the very long-chain fatty acids may be synthesized from a pool of the C18 series of fatty acids (saturated and monoenoic) not in equilibrium with the bulk of C18 acids in cerebral lipids. This could be a pool of acyl groups derived from ethanolamine phospholipids.  相似文献   

13.
Experiments on the rat liver homogenates and slices show that formate stimulates carbon incorporation from [1-14C] lysine and [2-14C] acetate into proteins and from [2-14C] acetate into lipids. The stimulating effect depends on both the formate concentration and nature of the labelled precursor. The in vitro experiments demonstrate the highest stimulating effect on the metabolism of both proteins and lipids under administration of 2 microM formate per 100 g of animal mass. Determination of the label incorporation rate at different time after formate administration showed that the latter evokes an intensified synthesis of protein with rate of its decay remaining the same.  相似文献   

14.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

15.
Biosynthesis of myelin proteins in vitro   总被引:3,自引:3,他引:0  
Abstract— The rates of uptake of DL-[1-14C]leucine into the three classes of protein in myelin isolated from slices of rat brain and spinal cord were determined. Basic protein exhibited the slowest rate of uptake; chloroform-methanol-soluble proteolipid protein exhibited intermediate rates and the insoluble protein had the most active uptake. All myelin proteins were less active than the mixture of proteins derived from the non-myelin fraction. Cyclohexi-mide (10?3 M) and choramphenicol (5 × 10?3 M) inhibited the incorporation of [1-14C]leucine into brain proteins by as much as 95 per cent. γ-Aminobutyric acid had no effect on the system. Chloramphenicol also inhibited the uptake of [1-14C]acetate into myelin lipids, but cycloheximide did not affect lipid synthesis. These effects were observed on both 35-day-oldand 18-month-old rats, but the biosynthetic activity was far less in myelin from the older rats. The results are discussed in relation to the structure of myelin. It is suggested that the data best fit models in which lipid and protein are in separate phases in the membrane.  相似文献   

16.
To study the effects of probucol on hepatic lipid metabolism, we used adult rat hepatocytes cultured on a feeder layer of 3T3 cells lethally treated with mitomycin C. These cultures synthesize and secrete for at least 2 weeks various lipids from [14C]acetate and [14C]oleate precursors. Treatment with 20 micrograms/ml of probucol for 7 and 14 days decreased the secretion of various radiolabeled lipid species to the culture medium and produced an intracytoplasmic accumulation of triacylglycerol droplets. The lipids whose secretion was most decreased were free and esterified cholesterol (50-70% reduction). Secretion of triacylglycerols and phospholipids was also reduced but to a lower extent. Intracytoplasmic triacylglycerols accumulated and the activity of glycerol phosphate dehydrogenase, a marker enzyme of glycerolipid synthesis, also increased (35-56%). The total incorporation of both radioactive precursors into free and esterified cholesterol and phospholipids was reduced 20-60%. Our data show that 2-week treatment of 3T3-hepatocyte cultures with pharmacological concentrations of probucol reduces significantly lipid secretion and suggest that at least part of the in vivo hypolipidemic effect of probucol could be attributed to a decrease in the secretion of lipids (i.e., lipoproteins) by hepatocytes.  相似文献   

17.
1. After the injection of sodium [1-14C]acetate, the highest incorporation of 14C into the lipids of the silkworm was observed after 24hr. 2. The specific radioactivity of the palmitic acid fraction was greater and increased more rapidly than that of the stearic acid fraction, which was consistent with the precursor–product relationship to be expected on the basis of current concepts of fatty acid synthesis in vivo. 3. The results indicate the probability of synthesis of lipid components in tissues other than the fat body. 4. Fractionation studies indicate considerable differences in the rate of incorporation of [1-14C]acetate into neutral lipids and phospholipids between larvae and pupae as well as among tissues of larvae. 5. The rate of incorporation of [1-14C]acetate remains constant throughout pupal development.  相似文献   

18.
Isolated brain capillaries from 2-month-old rats were incubated for 2 h in the presence of [3-14C]acetoacetate, D-3-hydroxy[3-14C]butyrate, [U-14C]glucose, [1-14C]acetate or [1-14C]butyrate. Labelled CO2 was collected as an index of oxidative metabolism and incorporation of label precursors into lipids was determined. The rate of CO2 production from glucose was slightly higher than from the other substrates. Interestingly, acetoacetate was oxidized at nearly the same rate as glucose. This shows that ketone bodies could be used as a source of energy by brain capillaries. Radiolabelled substrates were also used for the synthesis of lipids, which was suppressed by the addition of albumin. The incorporation of [U-14C]glucose in total lipids was 10-times higher than that from other precursors. However, glucose labelled almost exclusively the glycerol backbone of phospholipids, especially of phosphatidylcholine. Ketone bodies as well as glucose were incorporated mainly into phospholipids, whereas acetate and butyrate were mainly incorporated into neutral lipids. The contribution to fatty acid synthesis of various substrates was in the following order: butyrate greater than or equal to acetate greater than ketone bodies greater than or equal to glucose. All precursors except glucose were used for sterol synthesis. Glucose produced almost exclusively the glycerol backbone of phospholipids.  相似文献   

19.
The effects of di(2-ethylhexyl)phthalate, a typical peroxisomal proliferator, on the activities of key enzymes in the glycerophospholipid synthetic pathway and the incorporation of lipid precursors into liver lipids in vitro were studied periodically in rats. When di(2-ethylhexyl)phthalate was fed at the 1% level to rats, glycerol-3-phosphate acyltransferase activity increased 2-3-fold in liver homogenates and microsomes in 2-4 days. The specific activity of microsomal CTP:phosphocholine cytidylyltransferase increased by 1.5-fold, whereas the cytosolic activity was depressed. The microsomal CDPcholine:diacylglycerol cholinephosphotransferase specific activity decreased, whereas the activity in the homogenates increased, suggesting the proliferation of the hepatic endoplasmic reticulum in di(2-ethylhexyl)phthalate-treated rats. The incorporation of [1(3)-3H]glycerol or [1-14C]acetate into liver phospholipids in vitro increased in 2 days and stayed at a high level up to 12 days. The present study confirmed that di(2-ethylhexyl)phthalate induced an enhancement of phospholipid synthesis in the liver. The increase in hepatic phospholipid synthesis by this drug is presumably linked to the proliferation of peroxisomes and other intracellular membranes.  相似文献   

20.
The oxidation of 3-hydroxy[3-14C]butyrate to CO2 and its incorporation into cerebral lipids by cortex slices from one-week old rats were markedly inhibited by methylmalonate. However, methylmalonate had no effect on the metabolism of labelled aceto- acetate, glucose and acetate by brain slices. Addition of propionate in the incubation medium reduced cerebral lipogenesis from labelled 3-hydroxybutyrate and acetate. Acute methylmalonic acidemia induced in one-week old pups by injecting 3% methylmalonate solution caused a reduction in the incorporation of labelled 3-hydroxybutyrate into cerebral lipids. However, acute methylmalonic acidemia had no effect on cerebral lipogensis in vivo from labelled acetate. These findings show (i) the conversion of 3-hydroxybutyrate to acetoacetate by 3-hydroxybutyrate dehydrogenase in the brain is inhibited by methylmalonate, and (ii) an inhibition of cerebral lipid synthesis by propionate, which also accumulates in patients with methylmalonic aciduria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号