首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aptamers interacting with RNA hairpins through loop-loop (so-called kissing) interactions have been described as an alternative to antisense oligomers for the recognition of RNA hairpins. R06, an RNA aptamer, was previously shown to form a kissing complex with the TAR (trans-activating responsive) hairpin of HIV-1 RNA (Ducongé and Toulmé (1999) RNA 5, 1605). We derived a chimeric locked nucleic acid (LNA)/DNA aptamer from R06 that retains the binding properties of the originally selected R06 aptamer. We demonstrated that this LNA/DNA aptamer competes with a peptide of the retroviral protein Tat for binding to TAR, even though the binding sites of the two ligands do not overlap each other. This suggests that upon binding, the aptamer TAR adopts a conformation that is no longer appropriate for Tat association. In contrast, a LNA/DNA antisense oligomer, which exhibits the same binding constant and displays the same base-pairing potential as the chimeric aptamer, does not compete with Tat. Moreover, we showed that the LNA/DNA aptamer is a more specific TAR binder than the LNA/DNA antisense sequence. These results demonstrate the benefit of reading the three-dimensional shape of an RNA target rather than its primary sequence for the design of highly specific oligonucleotides.  相似文献   

2.
3.
4.
We synthesized and evaluated by surface plasmon resonance 64 LNA/2'-O-methyl sequences corresponding to all possible combinations of such residues in a kissing aptamer loop complementary to the 6-nt loop of the TAR element of HIV-1. Three combinations of LNA/2'-O-methyl nucleoside analogues where one or two LNA units are located on the 3' side of the aptamer loop display an affinity for TAR below 1nM, i.e. one order of magnitude higher than the parent RNA aptamer. One of these combinations inhibits the TAR-dependent luciferase expression in a cell assay.  相似文献   

5.
6.
Aptamers are powerful candidates for molecular imaging applications due to a number of attractive features, including rapid blood clearance and tumor penetration. We carried out structure–activity relationship (SAR) studies with the Tenascin-C binding aptamer TTA1, which is a promising candidate for application in tumor imaging with radioisotopes. The aim was to improve its in vivo stability and target binding. We investigated the effect of thermal stabilization of the presumed non-binding double-stranded stem region on binding affinity and resistance against nucleolytic degradation. To achieve maximal thermal stem stabilization melting experiments with model hexanucleotide duplexes consisting of unmodified RNA, 2′-O-methyl RNA (2′-OMe), 2′-Fluoro RNA (2′-F) or Locked Nucleic Acids (LNAs) were initially carried out. Extremely high melting temperatures have been found for an LNA/LNA duplex. TTA1 derivatives with LNA and 2′-OMe modifications within the non-binding stem have subsequently been synthesized. Especially, the LNA-modified TTA1 derivative exhibited significant stem stabilization and markedly improved plasma stability while maintaining its binding affinity to the target. In addition, higher tumor uptake and longer blood retention was found in tumor-bearing nude mice. Thus, our strategy to introduce LNA modifications after the selection procedure is likely to be generally applicable to improve the in vivo stability of aptamers without compromising their binding properties.  相似文献   

7.
Locked nucleic acid (LNA) and 2'-O-methyl nucleotide (OMeN) are the most extensively studied nucleotide analogues. Although both LNA and OMeN are characterized by the C3'-endo sugar pucker conformation, which is dominant in A-form DNA and RNA nucleotides, they demonstrate different binding behaviours. Previous studies have focused attention on their properties of duplex stabilities, hybridization kinetics and resistance against nuclease digestion; however, their ability to discriminate mismatched hybridizations has been explored much less. In this study, LNA- and OMeN-modified oligonucleotide probes have been prepared and their effects on the DNA duplex stability have been examined: LNA modifications can enhance the duplex stability, whereas OMeN modifications reduce the duplex stability. Next, we studied how the LNA:DNA and OMeN:DNA mismatches reduced the duplex stability. Melting temperature measurement showed that different LNA:DNA or OMeN:DNA mismatches indeed influence the duplex stability differently. LNA purines can discriminate LNA:DNA mismatches more effectively than LNA pyrimidines as well as DNA nucleotides. Furthermore, we designed five LNA- and five OMeN-modified oligonucleotide probes to simulate realistic situations where target-probe duplexes contain a complementary LNA:DNA or OMeN:DNA base pairs and a DNA:DNA mismatch simultaneously. The measured collective effect showed that the duplex stability was enhanced by the complementary LNA:DNA base pair but decreased by the DNA:DNA mismatch in a position-dependent manner regardless of the chemical identity and position of the complementary LNA:DNA base pair. On the other hand, the OMeN-modified probes also showed that the duplex stability was reduced by both the OMeN modification and the OMeN:DNA mismatch in a position-dependent manner.  相似文献   

8.
9.
An RNA aptamer for an HIV Tat protein has been isolated by the in vitro SELEX method. The RNA aptamer binds to the Tat protein 50-100 times more strongly than native TAR RNA does. Here, we have investigated the structure of the RNA aptamer complexed with ligands, partial peptide fragments of the Tat protein or argininamide, by multidimensional 1H/13C/15N NMR. It is strongly suggested that two U:A:U base triples are formed in the RNA aptamer upon binding of ligands. Specific hydrogen bonds between arginine side chains of ligands and guanine bases located adjacent to the base triples are identified. On the basis of many intramolecular and intermolecular NOEs, a structural model of the complex has been constructed.  相似文献   

10.
Hybridization-sensitive fluorescent DNA probes containing the nucleotide units of locked nucleic acid (LNA) have been developed. Exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probes that incorporated LNA nucleotides achieved high thermostability of the hybrid with target RNA strands. The appropriately designed ECHO-LNA chimeric probes exhibited an effective on-off switching property of fluorescence depending on hybridization with RNA and facilitated fluorescent detection of the TAR RNA strand forming a hairpin structure and distinction of one base difference in PLAC4 RNA sequence.  相似文献   

11.
The inhibitory potency of an antisense oligonucleotide depends critically on its design and the accessibility of its target site. Here, we used an RNA interference-guided approach to select antisense oligonucleotide target sites in the coding region of the highly structured hepatitis C virus (HCV) RNA genome. We modified the conventional design of an antisense oligonucleotide containing locked nucleic acid (LNA) residues at its termini (LNA/DNA gapmer) by inserting 8-oxo-2’-deoxyguanosine (8-oxo-dG) residues into the central DNA region. Obtained compounds, designed with the aim to analyze the effects of 8-oxo-dG modifications on the antisense oligonucleotides, displayed a unique set of properties. Compared to conventional LNA/DNA gapmers, the melting temperatures of the duplexes formed by modified LNA/DNA gapmers and DNA or RNA targets were reduced by approximately 1.6-3.3°C per modification. Comparative transfection studies showed that small interfering RNA was the most potent HCV RNA replication inhibitor (effective concentration 50 (EC50): 0.13 nM), whereas isosequential standard and modified LNA/DNA gapmers were approximately 50-fold less efficient (EC50: 5.5 and 7.1 nM, respectively). However, the presence of 8-oxo-dG residues led to a more complete suppression of HCV replication in transfected cells. These modifications did not affect the efficiency of RNase H cleavage of antisense oligonucleotide:RNA duplexes but did alter specificity, triggering the appearance of multiple cleavage products. Moreover, the incorporation of 8-oxo-dG residues increased the stability of antisense oligonucleotides of different configurations in human serum.  相似文献   

12.
In vitro selection was performed to identify DNA aptamers against the TAR RNA stem-loop structure of HIV-1. A counterselection step allowed the elimination of kissing complex-forming aptamers previously selected (Boiziau et al. J. Biol. Chem. 1999; 274:12730). This led to the emergence of oligonucleotides, most of which contained two consensus sequences, one targeted to the stem 3'-strand (5'-CCCTAGTTA) and the other complementary to the TAR apical loop (5'-CTCCC). The best aptamer could be shortened to a 19-mer oligonucleotide, characterized by a dissociation constant of 50 nM. A 16-mer oligonucleotide complementary to the TAR stem 3'-strand could also be derived from the identified aptamers, with an equal affinity (Kd = 50 nM). Experiments performed to elucidate the interaction between TAR and the aptamers (UV melting measures, enzymatic and chemical footprints) demonstrated that the TAR stem 5'-strand was not simply displaced as a result of the complex formation but unexpectedly remained associated on contact with the antisense oligonucleotide. We suggest that a multistranded structure could be formed.  相似文献   

13.
The syntheses of 10 new RNA 2'-O-modifications, their incorporation into oligonucleotides, and an evaluation of their properties such as RNA affinity and nuclease resistance relevant to antisense activity are presented. All modifications combined with the natural phosphate backbone lead to significant gains in terms of the stability of hybridization to RNA relative to the first-generation DNA phosphorothioates (PS-DNA). The nuclease resistance afforded in particular by the 2'-O-modifications carrying a positive charge surpasses that of PS-DNA. However, small electronegative 2'-O-substituents, while enhancing the RNA affinity, do not sufficiently protect against degradation by nucleases. Similarly, oligonucleotides containing 3'-terminal residues modified with the relatively large 2'-O-[2-(benzyloxy)ethyl] substituent are rapidly degraded by exonucleases, proving wrong the assumption that steric bulk will generally improve protection against nuclease digestion. To analyze the factors that contribute to the enhanced RNA affinity and nuclease resistance we determined crystal structures of self-complementary A-form DNA decamer duplexes containing single 2'-O-modified thymidines per strand. Conformational preorganization of substituents, favorable electrostatic interactions between substituent and sugar-phosphate backbone, and a stable water structure in the vicinity of the 2'-O-modification all appear to contribute to the improved RNA affinity. Close association of positively charged substituents and phosphate groups was observed in the structures with modifications that protect most effectively against nucleases. The promising properties exhibited by some of the analyzed 2'-O-modifications may warrant a more detailed evaluation of their potential for in vivo antisense applications. Chemical modification of RNA can also be expected to significantly improve the efficacy of small interfering RNAs (siRNA). Therefore, the 2'-O-modifications introduced here may benefit the development of RNAi therapeutics.  相似文献   

14.
15.
In vitro selection was performed in a DNA library, made of oligonucleotides with a 30-nucleotide random sequence, to identify ligands of the human immunodeficiency virus type-1 trans-activation-responsive (TAR) RNA element. Aptamers, extracted after 15 rounds of selection-amplification, either from a classical library of sequences or from virtual combinatorial libraries, displayed an imperfect stem-loop structure and presented a consensus motif 5'ACTCCCAT in the apical loop. The six central bases of the consensus were complementary to the TAR apical region, giving rise to the formation of RNA-DNA kissing complexes, without disrupting the secondary structure of TAR. The RNA-DNA kissing complex was a poor substrate for Escherichia coli RNase H, likely due to steric and conformational constraints of the DNA/RNA heteroduplex. 2'-O-Methyl derivatives of a selected aptamer were binders of lower efficiency than the parent aptamer in contrast to regular sense/antisense hybrids, indicating that the RNA/DNA loop-loop region adopted a non-canonical heteroduplex structure. These results, which allowed the identification of a new type of complex, DNA-RNA kissing complex, demonstrate the interest of in vitro selection for identifying non-antisense oligonucleotide ligands of RNA structures that are of potential value for artificially modulating gene expression.  相似文献   

16.
Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.  相似文献   

17.
Locked nucleic acids (LNA) are novel high-affinity DNA analogs that can be used as genotype-specific drugs. The LNA oligonucleotides (LNA PO ODNs) are very stable in vitro and in vivo without the need for a phosphorothiolated backbone. In this study we tested the biological fate and the efficacy in tumor growth inhibition of antisense oligonucleotides directed against the gene of the large subunit of RNA polymerase II (POLR2A) that are completely synthesized as LNA containing diester backbones. These full LNA oligonucleotides strongly reduce POLR2A protein levels. Full LNA PO ODNs appeared to be very stable compounds when injected into the circulation of mice. Full LNA PO ODNs were continuously administered for 14 days to tumor-bearing nude mice. Tumor growth was inhibited sequence specifically at dosages from 1 mg/kg/day. LNA PO ODNs appeared to be non-toxic at dosages <5 mg/kg/day. Biodistribution studies showed the kidneys to have the highest uptake of LNA PO ODNs and urinary secretion as the major route of clearance. This report shows that LNA PO ODNs are potent genotype-specific drugs that can inhibit tumor growth in vivo.  相似文献   

18.
19.
Staphylococcus aureus is a major foodborne pathogen. Gram-positive bacteria have unique teichoic acids as cell-wall components. In order to identify ligands specific to the bacteria, we developed an RNA aptamer against the teichoic acid of Staphylococcus aureus using SELEX technology. To this end, we used a polystyrene 96-well-based selection method and confirmed the binding activity of the RNA aptamer to the teichoic acid using real-time PCR. Of note, the teichoic acid-specific RNA aptamer was observed to bind to S. aureus bacterial cells also. This RNA aptamer could therefore be useful as a diagnostic ligand against S. aureus-associated foodborne illness.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号