首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Segal 《Biochemistry》1988,27(7):2586-2590
3,5,3'-Triiodothyronine (T3) produced a rapid and transient increase in 45Ca uptake and cytoplasmic free calcium concentration in rat thymocytes, which is the most rapid effect of T3 in this system. This effect was manifested in cells suspended in medium containing 1 mM calcium. The T3 effect on 45Ca uptake was evident at 15-30 s, reached maximum at 30-60 s, and returned to control values at 5 min. The T3 effect on cytoplasmic free calcium concentration was seen after 30 s, reached maximum at 7 min, and returned to control values after 24 min. In cells suspended in Ca2+-free medium, T3 produced a similar rapid increase in 45Ca uptake, which was sustained for at least 60 min, but T3 failed to change cytoplasmic free calcium concentration. Alprenolol (10 microM) blocked the stimulatory effects of T3 on these two functions in a similar fashion. From these results, I suggest that in rat thymocytes T3 influences cellular calcium economy through a biphasic mechanism in which T3 first increases calcium uptake which, in turn, is followed by a release of calcium from intracellular pool(s), resulting in a further increase in cytoplasmic free calcium concentration and the activation of Ca2+ -regulated systems. Moreover, the present study provides further support for the postulate that in the rat thymocyte calcium serves as the first messenger for the plasma membrane-mediated stimulatory effects of T3 on several metabolic functions.  相似文献   

2.
It has been repeatedly shown that stimulation of a human leukemic T-cell line, JURKAT, by lectins such as phytohaemagglutinin and anti-T3 antibody (OKT3) leads to an elevation in the concentration of cytosolic free Ca2. This Ca2+ transient results from both an intracellular mobilization and an influx of Ca2+ through specific membrane channels. The objective of this study was to investigate the mechanism by which receptor-mediated influx of Ca2+ is regulated in JURKAT cells, which demonstrably lack 'voltage-dependent calcium channels'. It was found that upon increased loading with quin2 or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate (BAPTA) there was a pronounced decline of both phytohaemagglutinin-stimulated and OKT3-stimulated influx of 45Ca2+. Using 15 microM quin2/AM or 30 microM BAPTA/AM, agonist-stimulated 45Ca2+ influx was almost totally abolished. At these concentrations of both quin2/AM or BAPTA/AM, phytohaemagglutinin and OKT3 could still induce a rise of cytosolic free Ca2+ above 200 nM. In the presence of La3+ (200 microM), which completely inhibited the agonist-induced 45Ca2+ influx, both phytohaemagglutinin and OKT3 were able to raise the concentrations of cytosolic free Ca2+ to well above 200 nM by merely mobilizing Ca2+ from intracellular stores alone. The data suggest that an agonist-induced increase in the concentration of cytosolic free Ca2+, due to mobilization from intracellular stores, could either directly or indirectly, initiate receptor-mediated Ca2+ influx across the plasma membrane in JURKAT cells.  相似文献   

3.
Human platelets labelled with either [14C]arachidonic acid or [32P]orthophosphate were loaded or not with the Ca2+ fluorescent indicator quin 2. They were then incubated in the presence or in the absence of human thrombin (1 U/ml) in a medium where Ca2+ concentration was adjusted near zero or to 1 mM. Under these conditions, phospholipase A2 activity, as detected by the release of [14C]arachidonate and of its metabolites, or by the hydrolysis of [14C]phosphatidylcholine, was severely impaired in quin 2-loaded platelets upon removal of external Ca2+. However, Ca2+ was not required in non-loaded platelets, where a maximal phospholipase A2 activity was detected in the absence of external Ca2+. In contrast, phospholipase C action, as determined from the amounts of [14C]diacylglycerol, [14C]- or [32P]phosphatidic acid formed, appeared to be much less sensitive to the effects of quin 2 loading and of Ca2+ omission. By using various concentrations of quin 2, it was found that the inhibitory effect exerted against phospholipase A2 could be overcome by external Ca2+ only when the intracellular concentration of the calcium chelator did not exceed 2 mM. At higher concentrations averaging 3.5 mM of quin 2, phospholipase A2 activity was fully suppressed even in the presence of external Ca2+, whereas phospholipase C was still active, although partly inhibited. It is concluded that platelet phospholipase A2 requires higher Ca2+ concentrations than phospholipase C to display a maximal activity. By comparing platelet phospholipase A2 activity under various conditions with the values of cytoplasmic free Ca2+ as detected by quin 2 fluorescence, it is proposed that cytoplasmic free Ca2+ in control platelets stimulated with thrombin can attain concentrations above 1 microM, probably close to 5-10 microM, as recently determined with the photoprotein aequorin (Johnson, P.C., Ware, J.A., Cliveden, P.B., Smith, M., Dvorak, A.M. and Salzman, E.W. (1985) J. Biol. Chem. 260, 2069-2076).  相似文献   

4.
Properties of different Ca2+ pools in permeabilized rat thymocytes   总被引:1,自引:0,他引:1  
The regulation of free Ca2+ concentration by intracellular pools and their participation in the mitogen-induced changes of the cytosolic free Ca2+ concentration, [Ca2+]i, was studied in digitonin-permeabilized and intact rat thymocytes using a Ca2+-selective electrode, chlortetracycline fluorescence and the Ca2+ indicator quin-2. It is shown that in permeabilized thymocytes Ca2+ can be accumulated by two intracellular compartments, mitochondrial and non-mitochondrial. Ca2+ uptake by the non-mitochondrial compartment, presumably the endoplasmic reticulum, is observed only in the presence of MgATP, is increased by oxalate and inhibited by vanadate. The mitochondria do not accumulate calcium at a free Ca2+ concentration below 1 microM. The non-mitochondrial compartment has a greater affinity for calcium and is capable of sequestering Ca2+ at a free Ca2+ concentration less than 1 microM. At free Ca2+ concentration close to the cytoplasmic (0.1 microM) the main calcium pool in permeabilized thymocytes is localized in the non-mitochondrial compartment. Ca2+ accumulated in the non-mitochondrial pool can be released by inositol 1,4,5-triphosphate (IP3) which has been inferred to mediate Ca2+ mobilization in a number of cell types. Under experimental conditions in which ATP-dependent Ca2+ influx is blocked, the addition of IP3 results in a large Ca2+ release from the non-mitochondrial pool; thus IP3 acts by activation of a specific efflux pathway rather than by inhibiting Ca2+ influx. SH reagents do not prevent IP3-induced Ca2+ mobilization. Addition of the mitochondrial uncouplers, FCCP or ClCCP, to intact thymocytes results in no increase in [Ca2+]i measured with quin-2 tetraoxymethyl ester whereas the Ca2+ ionophore A23187 induces a Ca2+ release from the non-mitochondrial store(s). Thus, the data obtained on intact cells agree with those obtained in permeabilized thymocytes. The mitogen concanavalin A increases [Ca2+]i in intact thymocytes suspended in both Ca2+-containing an Ca2+-free medium. This indicates a mitogen-induced mobilization of an intracellular Ca2+ pool, probably via the IP3 pathway.  相似文献   

5.
The role of calcium in the control of respiration by the mitogen concanavalin A (ConA) was investigated in rat thymocytes. ConA induced an increase in both mitochondrial respiration and the mitochondrial calcium pool. The stimulation of respiration was shown to be independent of the increase in mitochondrial calcium: the calcium pool declined after 3 min, whereas the respiration increase was persistent, and was not affected by depletion of the calcium pool or by buffering intracellular Ca2+ transients with quin2. The mitogen phytohaemagglutinin stimulated respiration to the same extent as ConA, but did not increase the mitochondrial calcium pool. In addition, respiration was unaffected by changes in the mitochondrial calcium pool induced by increasing or decreasing extracellular calcium. These results indicate that control of respiration is not located in the Ca2+-sensitive mitochondrial dehydrogenases. The ConA-induced increase in respiration could be blocked by oligomycin, suggesting control by cytoplasmic ATP turnover, and was not associated with detectable changes in NAD(P)H fluorescence, indicating a balance between increased electron transfer and increased supply of reduced substrates.  相似文献   

6.
An increase in the free cytoplasmic Ca2+ concentration in thymocytes can be detected by the fluorescent indicator quin 2 within a few seconds of the addition of concanavalin A and the response is quantified from the increased proportion of quin 2 in the cells chelated by Ca2+ ('% Ca-quin 2'). The % Ca-quin 2 in untreated cells is 53 +/- 6%, increases to 64 +/- 7% immediately after the addition of concanavalin A and declines spontaneously over 24 h back to the level in untreated cells (53 +/- 6%). The increase in % Ca-quin 2 in response to concanavalin A is completely blocked when 50 mM-alpha-methyl D-mannoside is added before concanavalin A and completely reversed when the competing sugar is added immediately after the mitogen. Addition of alpha-methyl D-mannoside at increasing intervals after concanavalin A addition causes a progressively smaller decrease in % Ca-quin 2 and has a negligible effect after 24 h, when the % Ca-quin 2 is the same as that in untreated cells. The decline in the calcium signal defined by these experiments has a similar time course to cap formation by concanavalin A on the cells. It is concluded that the calcium signal lasts only while concanavalin A is bound to the cell surface and is terminated either by capping or by the addition of alpha-methyl D-mannoside.  相似文献   

7.
Trypsin produces a dose-related increase in cellular cyclic AMP concentration in rat thymocytes [Shneyour, Patt & Trainin (1976) J. Immunol. 117, 2143-2149; Segal & Ingbar (1983) Clin. Res. 31, 277A]. In the present study, I examined whether this effect of trypsin requires Ca2+ and whether it is modified by calmodulin. In fresh thymocytes suspended in standard medium (containing 1 mM-Ca2+), trypsin produced a concentration-dependent increase in cytoplasmic free Ca2+ concentration, which was evident at a concentration of 50 micrograms of trypsin/ml and reached maximal values at about 1 mg/ml. This effect of trypsin was very prompt in onset, almost immediate, and reached maximal values within 2-3 min. But in cells suspended in essentially Ca2+-free medium (6 nM free Ca2+), trypsin had no effect on cytoplasmic free Ca2+ concentration, which indicates that trypsin acted by increasing Ca2+ uptake rather than Ca2+ release from an intracellular pool. However, the increase in thymocyte cyclic AMP concentration produced by trypsin was independent of extracellular Ca2+ and was not influenced by calmodulin, because it was the same in the presence or absence of Ca2+ and was not changed by the calmodulin inhibitor trifluoperazine. I therefore suggest that in rat thymocytes the trypsin-induced increase in cyclic AMP concentration does not require Ca2+ and is not influenced by calmodulin.  相似文献   

8.
LaATP is shown to be an effective inhibitor of the calcium ATPase of sarcoplasmic reticulum because the binding of LaATP to cE.Ca2 results in the formation of lanthanum phosphoenzyme, which decays slowly. Steady-state activity of the calcium ATPase in leaky sarcoplasmic reticulum vesicles is inhibited 50% by 0.16 microM LaCl3 (15 nM free La3+, 21 nM LaATP) in the presence of 25 microM Ca2+ and 49 microM MgATP (5 mM MgSO4, 100 mM KCl, 40 mM 4-morpholinepropanesulfonic acid, pH 7.0, 25 degrees C). However, 50% inhibition of the uptake of 45Ca and phosphorylation by [gamma-32P]ATP in a single turnover experiment requires 100 microM LaCl3 (28 microM free La3+) in the presence of 25 microM Ca2+; this inhibition is reversed by calcium but inhibition of steady-state turnover is not. Therefore, binding of La3+ to the cytoplasmic calcium transport site is not responsible for the inhibition of steady-state ATPase activity. The addition of 6.7 microM LaCl3 (1.1 microM free La3+) has no effect on the rate of dephosphorylation of phosphoenzyme formed from MgATP and enzyme in leaky vesicles, while 6.7 mM CaCl2 slows the rate of phosphoenzyme hydrolysis as expected; 6.7 microM LaCl3 and 6.7 mM CaCl2 cause 95 and 98% inhibition of steady-state ATPase activity, respectively. This shows that inhibition of ATPase activity in the steady state is not caused by binding of La3+ to the intravesicular calcium transport site of the phosphoenzyme. Inhibition of ATPase activity by 2 microM LaCl3 (0.16 microM free La3+, 0.31 microM LaATP) requires greater than 5 s, which corresponds to approximately 50 turnovers, to reach a steady-state level of greater than or equal to 80% inhibition. Inhibition by La3+ is fully reversed by the addition of 0.55 mM CaCl2 and 0.50 mM EGTA; this reactivation is slow with t1/2 approximately 9 s. Two forms of phosphoenzyme are present in reactions that are partially inhibited by La3+: phosphoenzyme with Mg2+ at the catalytic site and phosphoenzyme with La3+ at the catalytic site, which undergo hydrolysis with observed rate constants of greater than 4 and 0.05 s-1, respectively. We conclude, therefore, that La3+ inhibits steady-state ATPase activity under these conditions by replacing Mg2+ as the catalytic ion for phosphoryl transfer. The slow development of inhibition corresponds to the accumulation of lanthanum phosphoenzyme. Initially, most of the enzyme catalyzes MgATP hydrolysis, but the fraction of enzyme with La3+ bound to the catalytic site gradually increases because lanthanum phosphoenzyme undergoes hydrolysis much more slowly than does magnesium phosphoenzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The highly selective fluorescent Ca2+ indicator 'quin 2' has been loaded into ram and boar spermatozoa as the acetoxymethyl ester, 'quin 2/AM', which is hydrolysed and trapped in the cytoplasm. Loadings of several mM were not toxic to spermatozoa as judged by motility. Fluorescence measurements (mean +/- S.E.M.) indicated a normal cytoplasmic free-calcium concentration, [Ca2+]i, of 193 nM +/- 0.2 (n = 10) for ejaculated ram sperm, 175 nM +/- 3.9 (n = 10) for cauda epididymal boar sperm and 105 nM +/- 10 (n = 10) for the caput sperm. After cold shock ejaculated ram and cauda epididymal boar sperm did not retain quin 2, due presumably to structural damage. However, cold shocked caput boar sperm could be readily loaded with quin 2 and had a [Ca2+]i similar to control sperm. Sodium azide, propranolol and caffeine did not affect the [Ca2+]i of ram and boar sperm, however theophylline, dibutyryl c-AMP and La3+ significantly reduced it. The inhibitors rotenone and antimycin A, and the uncouplers 2,4-DNP and CCCP caused a transient elevation of [Ca2+]i, most likely resulting from release of mitochondrial calcium. The increased [Ca2+]i following addition of the ionophore A23187, was highly pH dependent in ram spermatozoa and it was critical to increase the pH of the medium above 7.5; the increase in [Ca2+]i was apparently not dependent on the oxidative metabolism of the sperm as addition of the uncouplers 2,4-DNP and CCCP had no effect on [Ca2+ )i. Addition of filipin to ram and boar sperm resulted in a large increase in [Ca2+]i but addition of filipin to ionophore-treated sperm caused [Ca2+]i to fall well below control levels.  相似文献   

10.
Thrombin-induced calcium movements in platelet activation   总被引:5,自引:0,他引:5  
The thrombin-induced Ca2+ fluxes and their coupling to platelet aggregation of the human platelet were studied using quin2 as a measure of the cytoplasmic Ca2+ concentration [( Ca2+]cyt) and chlorotetracycline (CTC) as a measure of internally sequestered Ca2+. Evidence is given that the CTC fluorescence change is proportional to the free internal Ca2+ concentration in the dense tubular lumen. The intracellular quin2 concentration was 1 mM and analysis showed that it did not perturb the processes reported herein. The value of [Ca2+]cyt at rest and during thrombin activation was analyzed in terms of Ca2+ influx, Ca2+ release, Ca2+ sequestration, and Ca2+ extrusion. Influx was distinguished from internal release by removing extracellular Ca2+ 1 min before thrombin activation. In the presence of 2 mM external Ca2+, the thrombin-induced Ca2+ influx accounts for most of the increase in [Ca2+]cyt (over 80%). Thrombin-induced Ca2+ influx and release have somewhat different EC50 values (0.17 U/ml vs. 0.35 U/ml). The contribution of influx can be inhibited by verapamil, bepridil and Cd2+ (IC50 values of 19 microM, 2 microM and 50 microM). The influx results were analyzed in terms of a thrombin-activated channel. Indomethacin pretreatment experiments suggest that activation of the arachidonic pathway accounts for approx. 50% of the influx-related [Ca2+]cyt elevation. Elevation of [Ca2+]cyt by intracellular release is not inhibited by verapamil or Cd2+ but is inhibited by bepridil with a high IC50 (25 microM). It is only 15-20% inhibited by indomethacin and is thus not dependent on thromboxane A2 formation. The release reaction does not require Ca2+ influx. The rate of thrombin-activated platelet aggregation is shown to have an approximately fourth-power dependence on [Ca2+]cyt with an apparent Km of 0.4 microM. Comparisons of aggregation rates of the partially thrombin-activated vs. fully thrombin-activated, partially verapamil-inhibited conditions suggest that this dependence on [Ca2+]cyt is the major determinant of the aggregation behavior. Analysis shows that calcium influx is the major pathway for elevating [Ca2+]cyt by thrombin when physiological concentrations of external Ca2+ are present.  相似文献   

11.
Pretreatment of rat vascular smooth muscle cells with the immunosuppressive drug cyclosporin A caused concentration- and time-dependent increases in both the amplitude and duration of the angiotensin II-induced rise in cytosolic free calcium, as measured with quin 2. Cyclosporin A had no significant effect on basal quin 2 fluorescence. However, cyclosporin A increased the basal 45Ca2+ influx. This stimulation of 45Ca2+ influx was not blocked by nifedipine (10(-6) M). Cyclosporin A also augmented the angiotensin II-stimulated influx and efflux of 45Ca2+. These results demonstrate that cyclosporin A increases the permeability of the plasma membrane for Ca2+ and also augments the angiotensin II-induced increases in cytosolic free calcium.  相似文献   

12.
The effect of palmitic acid on basal and insulin-stimulated incorporation of glucose into rat adipocytes was studied. Palmitic acid (2.40 mM) stimulated basal as well as insulin-stimulated glucose incorporation in rat adipocytes three and twofold, respectively. Similar degrees of stimulation of basal glucose oxidation by palmitate were also observed. The ability of palmitic acid to stimulate glucose uptake was additive with respect to the stimulation induced by insulin and was proportional to the palmitic acid concentration between 0.15 mM and 2.40 mM. Stimulation of glucose incorporation by palmitic acid was inhibited by preincubating the cells with quin2-AM, which accumulates intracellularly yielding the trapped chelator form. quin2, which binds intracellular Ca2+.The concentration of quin2-AM required for half-maximal inhibition of palmitic acid stimulated glucose incorporation was 3.8 +/- 1.2 microM (mean +/- SEM). The inhibition of palmitic acid-stimulated glucose incorporation by quin2-AM (10 microM) was overcome by incubating cells with the Ca2+ ionophore, A23187, in the presence of extracellular Ca2+ (2.6 mM). Chelation of extracellular Ca2+ with EGTA did not significantly affect the magnitude of palmitic acid-stimulated glucose incorporation. Dantrolene (12.5-100 microM) failed to affect basal or palmitic acid-stimulated glucose incorporation. These findings suggest that palmitic acid stimulates incorporation of glucose in the adipocyte by a mechanism dependent upon intracellular but not extracellular Ca2+.  相似文献   

13.
Photometric fluorescence microscopy has been used to measure intracellular pH (pHi) and free calcium concentrations [( Ca]i) in individual mouse thymocytes and 2H3 rat basophil leukaemic cells containing indicators for pH (quene 1) or calcium (quin 2). The pHi and [Ca]i measurements in individual 2H3 cells and mouse thymocytes and their responses to various stimuli were consistent with the corresponding data obtained from suspensions of these cells measured in a spectrofluorimeter. Photometric fluorescence microscopy of these indicators in individual cells provides a sensitive and fast method of following pHi and [Ca]i responses in individual cells.  相似文献   

14.
Spermine. A regulator of mitochondrial calcium cycling   总被引:9,自引:0,他引:9  
Steady-state free Ca2+ concentrations have been measured with a Ca2+ electrode using suspensions of isolated rat liver mitochondria or saponin-treated hepatocytes. Mitochondria, when incubated in the presence of Mg2+ and MgATP2-, maintain a steady-state pCa2+ (-log [Ca2+]) of approximately 6.1 (0.8 microM). Addition of spermine lowered this value to a pCa2+ of 6.6 (0.25 microM). Spermine was the most effective polyamine, giving half-maximal effects at 170 microM and maximal effects at 400 microM. With saponin-permeabilized hepatocytes, spermine addition similarly showed that the mitochondria buffered the steady-state medium-free Ca2+ at a level approximating the cytosolic free Ca2+ concentration of intact hepatocytes. The initial rate of Ca2+ uptake by the mitochondrial Ca2+ uniporter was investigated using Ca2+-depleted mitochondria incubated in the presence of succinate and 0.3 mM free Mg2+. Under control conditions, Ca2+ uptake was not observed at free Ca2+ concentrations below 0.5 microM. Spermine (350 microM) increased the rate of Ca2+ uptake at all Ca2+ concentrations below 4.5 microM, but at higher Ca2+ concentrations, it was inhibitory. Spermine also affected mitochondrial Ca2+ efflux by decreasing the apparent Km from 16 to 3.8 nmol of Ca2+/mg of mitochondrial protein with no change of Vmax. Experiments with 45Ca2+ confirmed that spermine increased mitochondrial Ca2+ cycling at 0.2 microM free Ca2+. Hepatic spermine contents are reported to be about 1 mumol/g, wet weight, suggesting that this polyamine may have an important physiological role in intracellular calcium homeostasis.  相似文献   

15.
Glucagon stimulates flux through the glycine cleavage system (GCS) in isolated rat hepatocytes (Jois, M., Hall, B., Fewer, K., and Brosnan, J. T. (1989) J. Biol. Chem. 264, 3347-3351. In the present study, flux through GCS was measured in isolated rat liver perfused with 100 nM glucagon, 1 microM epinephrine, 1 microM norepinephrine, 10 microM phenylephrine, or 100 nM vasopressin. These hormones increased flux through GCS in perfused rat liver by 100-200% above the basal rate. The possibility that the stimulation of flux by adrenergic agonists and vasopressin is mediated by increases in cytoplasmic Ca2+ which in turn could regulate mitochondrial glycine catabolism was examined by measuring flux through GCS in isolated mitochondria in the presence of 0.04-2.88 microM free Ca2+. Flux through GCS in isolated mitochondria was exquisitely sensitive to free Ca2+ in the medium; half-maximal stimulation occurred at about 0.4 microM free Ca2+ and maximal stimulation (7-fold) was reached when the free Ca2+ in the medium was 1 microM. The Vmax (nanomoles/mg protein/min) and Km (millimolar) values for the flux through GCS in intact mitochondria were 0.67 +/- 0.16 and 20.66 +/- 4.82 in the presence of 1 mM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid and 3.28 +/- 0.76 and 10.98 +/- 1.91 in presence of 0.5 microM free Ca2+, respectively. The results show that the flux through GCS is sensitive to concentrations of calcium which would be achieved in the cytoplasm of hepatocytes stimulated by calcium-mobilizing hormones.  相似文献   

16.
The distribution of intracellular free calcium ions ([Ca2+]i) was measured in pollen tubes of Lilium longiflorum using video imaging microscopy and the calcium sensitive indicators fura-2 and quin-2. The mean [Ca2+]i in growing pollen tubes measured with fura-2 shows a maximum of 1.7 to 2.6 microM in the tube tip and decreases almost exponentially to 60 to 100 nM at 100 microns behind the tip. Using quin-2, the maximum [Ca2+]i was also found in the tube tip but with a lower Ca2+ concentration, namely 1 microM. Addition of the calcium channel blocker La3+ caused a decrease of the [Ca2+]i maximum in the tube tip, indicating a heterogeneous distribution of Ca2+ channels along the plasma membrane of pollen tubes. The [Ca2+]i increased after addition of vanadate or compound 48/80. This suggests an involvement of a calmodulin-dependent Ca2+ pump in generation of the Ca2+ gradient in lily pollen tubes. The high [Ca2+]i found in the tube tip with fura-2 seems to indicate the real Ca2+ concentration and is probably responsible for vesicle fusion, fragmentation of actin filaments, and inhibition of cytoplasmic streaming.  相似文献   

17.
We have previously demonstrated that 3,5,3'-tri-iodo-L-thyronine (T3) produces a very rapid and transient increase in calcium uptake and cytoplasmic free calcium concentration in the rat thymocyte, and have postulated that Ca2+-ATPase may contribute to the overall effect of T3 on cellular calcium metabolism. In the present study, we show that in the rat thymocyte, T3 increased plasma membrane Ca2+-ATPase activity. This effect of T3 was very rapid, seen at 30 s after the addition of the hormone, and was concentration-related, evident at a physiological concentration as low as 1 pM. Evaluation of the effect of several thyronine analogues on Ca2+-ATPase activity revealed the following order of potency: D-T3 greater than or equal to 3'-isopropyl-L-T2 = L-T3 = L-T4 = D-T4 greater than L-rT3 greater than 3,5-L-T2 greater than DL-thyronine. Studies with the calmodulin antagonist trifluoperazine demonstrated that thymocyte Ca2+-ATPase activity and its stimulation by T3 are influenced by calmodulin. Other studies showed that several adrenergic agents, agonists and antagonists, had no effect on thymocyte Ca2+-ATPase activity and its stimulation by T3. From these and previous observations, we would suggest that in the rat thymocyte, the T3-induced increase in Ca2+-ATPase activity, which enhances the expulsion of calcium from the cell, plays a role in the diminution and transiency of the stimulatory effect of T3 on thymocyte calcium metabolism.  相似文献   

18.
G R Hart  K P Ray  M Wallis 《FEBS letters》1986,203(1):77-81
Intracellular free Ca2+ concentrations [Ca2+]i were measured in ovine anterior pituitary cells using the quin 2 technique. Thyrotropin-releasing hormone (TRH) increased, dopamine decreased and growth hormone-releasing hormone (GHRH) had no detectable effect on [Ca2+]i. Loading the cells with quin 2, at an intracellular concentration less than that used during calcium determination, reduced both basal growth hormone (GH) and (to a small extent) prolactin secretion. Loading cells with quin 2 also markedly reduced GHRH-stimulated GH secretion. However, TRH-stimulated prolactin secretion was 3-times basal irrespective of quin 2 loading. The results indicate that the use of quin 2 to measure [Ca2+]i in some cell types may be complicated by actions of quin 2 on cellular function.  相似文献   

19.
In the extracellular pathogen Streptococcus pneumoniae, transformable by soluble DNA, calcium transport is shown to play a key role for vegetative growth, developement of competence for genetic transformation and experimental virulence. To get a more precise localisation of Ca2+ in the cell, we cloned the cDNA of apoaequorine in the chromosome of Streptococcus pneumoniae. This allowed the reconstitution of the acquorine system and chemoluminescence measurements of the cytoplasmic free calcium concentration in the bacteria. Intracellular free Ca2+ is 2 microM at the steady state and can reach 14 microM when calcium is added to the bacterial suspension. Increase in free Ca2+ in response to an imposed Ca2+ gradient depends on the initial velocity (Vi) of the DMB-sensitive Ca2+ transport, showing that changes in cytoplasmic Ca2+ involve active transport.  相似文献   

20.
It has been shown that delta-9-tetrahydrocannabinol (THC) suppresses thymocyte, lymph node, and splenic lymphocyte proliferation in response to a mitogenic stimulus. It has also been reported that increases occur in the cytosolic free calcium concentration (Ca2+) in mitogen treated lymphocytes. In an attempt to understand a portion of the molecular basis of the THC induced suppression of lymphocyte proliferation, we have examined the effects of THC on the Concanavalin A (Con A) induced cytosolic free Ca2+ mobilization in mouse thymocytes measured by fluorescent Ca2+ probes and spectrofluorometry. The results show that a 10 minute pretreatment with THC suppresses the normal rise in intracellular free Ca2+ in response to Con A. A THC concentration of 4 micrograms/ml (13 microM) was suppressive and the drug vehicle, DMSO, had no effect. In addition, we found that THC pretreatment did not inhibit the binding of FITC labeled Con A to the thymocytes suggesting that the drug did not interfere with lectin binding to the cell surface. To further define the nature of the Ca2+ response affected by THC, mouse thymocytes containing fura-2 were exposed to Con A either in the presence or absence of Ca(2+)-containing medium. It was observed that THC abrogated both intracellular release (measured in Ca(2+)-free medium) as well as extracellular Ca2+ influx. These results suggest that a portion of the proliferation defect in THC treated lymphocytes may be related to a drug induced inhibition of Ca2+ mobilization that normally occurs following mitogen treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号