首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Epstein-Barr virus (EBV) is a human DNA virus that is responsible for the syndrome infectious mononucleosis, and is associated with several forms of cancer. During both lytic and latent viral infection, viral proteins manipulate the host's cellular components to aid in viral replication and maintenance. Here, it is demonstrated that induction of EBV lytic replication results in a dramatic reorganization of mitochondria accompanied by a significant alteration of mitochondrial membrane potential and a rapid and transient increase in the microtubular cytoskeleton. Moreover, we show that expression of the EBV immediate-early genes BZLF1 and BRLF1 contributes to the mitochondrial alteration but not the increase in the microtubule cytoskeleton, suggesting that the mechanism for the observed cytoplasmic restructuring involves a number of coordinated viral and host proteins.  相似文献   

4.
5.
6.
7.
8.
The Epstein-Barr virus (EBV) immediate-early gene product, BRLF1, transactivates the human immunodeficiency virus type 1 (HIV-1) long terminal repeat. BRLF1-induced transactivation of HIV-1 promoter constructs is accompanied by an increase in plasmid mRNA and is reporter gene independent. Previously, BRLF1 transactivation of EBV promoters has been mapped to regions which function as enhancer elements. Deletional analysis demonstrates that BRLF1 transactivation of the HIV-1 promoter does not require the HIV-1 enhancer. Thus, the EBV BRLF1 gene product may transactivate by at least two different mechanisms, one mechanism involving certain enhancer elements and another mechanism which is enhancer independent.  相似文献   

9.
The Epstein-Barr virus (EBV) BMRF1 protein is a DNA polymerase processivity factor. We have deleted the BMRF1 open reading frame from the EBV genome and assessed the DeltaBMRF1 EBV phenotype. DeltaBMRF1 viruses were replication deficient, but the wild-type phenotype could be restored by BMRF1 trans-complementation. The replication-deficient phenotype included impaired lytic DNA replication and late protein expression. DeltaBMRF1 and wild-type viruses were undistinguishable in terms of their ability to transform primary B cells. Our results provide genetic evidence that BMRF1 is essential for lytic replication of the EBV genome.  相似文献   

10.
11.
12.
The human cytomegalovirus (HCMV) major immediate-early (MIE) genes, encoding IE1 p72 and IE2 p86, are activated by a complex enhancer region (base positions -65 to -550) that operates in a cell type- and differentiation-dependent manner. The expression of MIE genes is required for HCMV replication. Previous studies analyzing functions of MIE promoter-enhancer segments suggest that the distal enhancer region variably modifies MIE promoter activity, depending on cell type, stimuli, or state of differentiation. To further understand the mechanism by which the MIE promoter is regulated, we constructed and analyzed several different recombinant HCMVs that lack the distal enhancer region (-300 to -582, -640, or -1108). In human fibroblasts, the HCMVs without the distal enhancer replicate normally at high multiplicity of infection (MOI) but replicate poorly at low MOI in comparison to wild-type virus (WT) or HCMVs that lack the neighboring upstream unique region and modulator (-582 or -640 to -1108). The growth aberrancy was normalized after restoring the distal enhancer in a virus lacking this region. For HCMVs without a distal enhancer, the impairment in replication at low MOI corresponds to a deficiency in production of MIE RNAs compared to WT or virus lacking the unique region and modulator. An underproduction of viral US3 RNA was also evident at low MOI. Whether lower production of IE1 p72 and IE2 p86 causes a reduction in expression of the immediate-early (IE) class US3 gene remains to be determined. We conclude that the MIE distal enhancer region possesses a mechanism for augmenting viral IE gene expression and genome replication at low MOI, but this regulatory function is unnecessary at high MOI.  相似文献   

13.
EBNA1 is the only nuclear Epstein-Barr virus (EBV) protein expressed in both latent and lytic modes of infection. While EBNA1 is known to play several important roles in latent infection, the reason for its continued expression in lytic infection is unknown. Here we identified two roles for EBNA1 in the reactivation of latent EBV to the lytic cycle in epithelial cells. First, EBNA1 depletion in latently infected cells was shown to positively contribute to spontaneous EBV reactivation, showing that EBNA1 has a role in suppressing reactivation. Second, when the lytic cycle was induced, EBNA1 depletion decreased lytic gene expression and DNA amplification, showing that it positively contributed to lytic infection. Since we have previously shown that EBNA1 disrupts promyelocytic leukemia (PML) nuclear bodies, we investigated whether this function could account for the effects of EBNA1 on lytic infection by repeating the experiments with cells lacking PML proteins. In the absence of PML, EBNA1 did not promote lytic infection, indicating that the EBNA1-mediated PML disruption is responsible for promoting lytic infection. In keeping with this conclusion, PML silencing was found to be sufficient to induce the EBV lytic cycle. Finally, by generating cells with single PML isoforms, we showed that individual PML isoforms were sufficient to suppress EBV lytic reactivation, although PML isoform IV (PML IV) was ineffective because it was most efficiently degraded by EBNA1. Our results provide the first function for EBNA1 in lytic infection and show that EBNA1 interactions with PML IV lead to a loss of PML nuclear bodies (NBs) that promotes lytic infection.  相似文献   

14.
15.
16.
The Epstein-Barr virus (EBV) genome is present in a variety of tumor types, including virtually all undifferentiated nasopharyngeal carcinomas (NPC) and a portion of gastric carcinomas. The uniform presence of the EBV genome in certain tumors (versus only a very small number of normal B cells) suggests that novel therapies which specifically target EBV-positive cells for destruction might be effective for treating such tumors. Although the great majority of EBV-positive tumor cells are infected with one of the latent forms of EBV infection, expression of either viral immediate-early protein (BZLF1 or BRLF1) is sufficient to convert the virus to the lytic form of infection. Induction of the lytic form of EBV infection could potentially result in death of the tumor cell. Here we have examined the efficacy of adenovirus vectors expressing the BZLF1 or BRLF1 proteins for treatment of EBV-positive epithelial tumors. The BZLF1 and BRLF1 vectors induced preferential killing of EBV-positive, versus EBV-negative, gastric carcinoma cells in vitro. Infection of C18 NPC tumors (grown in nude mice) with either the BZLF1 or BRLF1 vector, but not a control adenovirus vector, induced expression of early lytic EBV genes in tumor cells. Injection of C18 tumors with the BZLF1 or BRLF1 adenovirus vector, but not the control vector, also significantly inhibited growth of the tumors in nude mice. The addition of ganciclovir did not significantly affect the antitumor effect of the BZLF1 and BRLF1 adenovirus vectors. These results suggest a potential cancer therapy against EBV-related tumors.  相似文献   

17.
18.
Virus infection stimulates potent antiviral responses; specifically, Epstein-Barr virus (EBV) infection induces and activates interferon regulatory factor 7 (IRF-7), which is essential for production of alpha/beta interferons (IFN-alpha/beta) and upregulates expression of Tap-2. Here we present evidence that during cytolytic viral replication the immediate-early EBV protein BZLF-1 counteracts effects of IRF-7 that are central to host antiviral responses. We initiated these studies by examining IRF-7 protein expression in vivo in lesions of hairy leukoplakia (HLP) in which there is abundant EBV replication but the expected inflammatory infiltrate is absent. This absence might predict that factors involved in the antiviral response are absent or inactive. First, we detected significant levels of IRF-7 in the nucleus, as well as in the cytoplasm, of cells in HLP lesions. IRF-7 activity in cell lines during cytolytic viral replication was examined by assay of the IRF-7-responsive promoters, IFN-alpha4, IFN-beta, and Tap-2, as well as of an IFN-stimulated response element (ISRE)-containing reporter construct. These reporter constructs showed consistent reduction of activity during lytic replication. Both endogenous and transiently expressed IRF-7 and EBV BZLF-1 proteins physically associate in cell culture, although BZLF-1 had no effect on the nuclear localization of IRF-7. However, IRF-7-dependent activity of the IFN-alpha4, IFN-beta, and Tap-2 promoters, as well as an ISRE promoter construct, was inhibited by BZLF-1. This inhibition occurred in the absence of other EBV proteins and was independent of IFN signaling. Expression of BZLF-1 also inhibited activation of IRF-7 by double-stranded RNA, as well as the activity of a constitutively active mutant form of IRF-7. Negative regulation of IRF-7 by BZLF-1 required the activation domain but not the DNA-binding domain of BZLF-1. Thus, EBV may subvert cellular antiviral responses and immune detection by blocking the activation of IFN-alpha4, IFN-beta, and Tap-2 by IRF-7 through the medium of BZLF-1 as a negative regulator.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号