首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Kihara  Y Misu  T Kubo 《Life sciences》1988,42(19):1817-1824
Slices of the rat medulla oblongata were superfused and electrically stimulated. The amount of endogenous GABA, beta-alanine and glutamate release from the slices was determined by high performance liquid chromatography with fluorometric detection. Inhibitors of GABA-transaminase (GABA-T), aminooxyacetic acid (10(-5) M), gamma-acetylenic GABA (10(-4) and 10(-3) M) and gabaculine (10(-5) M), enhanced the stimulus-evoked release of GABA and reduced that of beta-alanine, while no change was observed in the release of glutamate. These changes in amino acid release from the slices were accompanied by an increase in the content of GABA and a decrease in that of beta-alanine. The stimulus-evoked release of these amino acids was abolished by Ca2+-deprivation, in either the presence or absence of GABA-T inhibitors. These results suggest a modulatory role of GABA-T for synaptically releasable GABA and involvement of this enzyme in the synthesis of releasable beta-alanine.  相似文献   

2.
Evidence was obtained for the release of amino acids by electrical stimulation of slices of regions of the rat medulla oblongata: rostral ventrolateral, caudal ventrolateral and caudal dorsomedial. There was a Ca2+-dependent, tetrodotoxin-sensitive increase in the efflux of aspartate, glutamate, gamma-aminobutyric acid (GABA), glycine, and beta-alanine in all regions examined. There were distinct regional differences in the relative amounts of amino acids released. These results provide evidence for the possible neurotransmitter role of aspartate, glutamate, GABA, glycine, and beta-alanine in these regions of the rat medulla oblongata.  相似文献   

3.
The release of [3H]-aminobutyric acid (GABA) and its radioactive metabolites from slices of the cerebral cortex, cerebellum, striatum and brain stem of developing and adult mice was studied. The slices were incubated and superfused in the absence and presence of the GABA aminotransferase (GABA-T) inhibitor aminooxyacetic acid (AOAA). Exposure to 100 M AOAA totally inhibited GABA-T and all radioactivity released from slices was in authentic GABA. In studies on developing brain the 10-M concentration was also effective enough, except in cerebellar slices. In the absence of AOAA the major part of radioactivity spontaneously released from slices of adult cerebral cortex and cerebellum was tritiated water and still about one third part in the presence of 10 M AOAA. Potassium stimulation induced only the release of radioactive GABA but not labeled metabolites in both presence and absence of AOAA. AOAA reduced the stimulation-induced release of GABA. It is recommended that the use of GABA-T inhibitors should be discontinued in release experiments. Then labeled GABA must be separated in the effluents from its radioactive breakdown products.  相似文献   

4.
The posttranslational incorporation of arginine into proteins catalyzed by arginyl-tRNA protein transferase was determined in vitro in different rat brain regions. The incorporation was found in all the regions studied, although with different specific activities (pmol [14C]arginine incorporated/mg protein). Of the regions studied, hippocampus had the highest specific activity followed by striatum, medulla oblongata, cerebellum, and cerebral cortex. Electrophoretic analysis of the [14C]arginyl proteins from the different regions followed by autoradiography and scanner densitometry showed at least 13 polypeptide bands that were labeled with [14C]arginine. The radioactive bands were qualitatively coincident with protein bands revealed by Coomassie Blue. There were peaks that showed different proportions of labeling in comparison with peaks of similar molecular mass from total brain. Most notable because of their high proportions were those of molecular mass 125 kDa in hippocampus, striatum, and cerebral cortex; 112 and 98 kDa in striatum and cerebellum; and 33 kDa in hippocampus and striatum. In lower proportions than in total brain were the peaks of 33 kDa in medulla oblongata and cerebral cortex and of 125 kDa in medulla oblongata.  相似文献   

5.
Abstract— Aminooxyacetic acid (AOAA) administration produced an increase in γ-aminobutyric acid (GABA) levels in regions of cerebral cortex, subcortex and cerebellum. In some cortical areas studied, the maximal effect was observed with 25 mg/kg AOAA; in other regions GABA levels were increased further with 50 and 75 mg/kg AOAA. Pretreatment with 25 mg/kg AOAA effectively inhibited GABA:2-oxoglutarate aminotransferase (GABA-T) and partially inhibited glutamic acid decarboxylase (GAD) activity in regions of cerebral cortex. However, this dose did not affect GAD activity in substantia nigra while GABA-T in the nigra and in the cerebellum was only partially inhibited. In both cortical and subcortical areas, the increase in GABA produced by 25 mg/kg of AOAA was linear. In contrast, l -glutamic acid-hydrazide (GAH) had no effect in the pyriform and cingulate cortex for the first 60 min after injection, and produced a biphasic GABA increase in caudate and substantia nigra over a 4 h period. Results suggest that GAH and AOAA affect regional GABA metabolism differentially and that there are several problems associated with estimating absolute GABA synthesis rates by measuring the rate or GABA accumulation after inhibition of GABA catabolism with these agents. This approach, however, may provide an easily obtainable indication of whether drugs or other manipulations are altering GABA synthesis in a given region.  相似文献   

6.
2-Hydroxyputrescine in seven regions of single rat brains was measured with a sensitive, specific assay by gas chromatography-mass spectrometry. The regions were the cerebral cortex, cerebellum, medulla oblongata, hypothalamus, striatum, hippocampus, and midbrain. The level of 2-hydroxyputrescine was very high in the cerebral cortex and cerebellum, high in the medulla oblongata, hypothalamus, and hippocampus, and low in the striatum and midbrain. The level of 2-hydroxyputrescine in the cerebellum was significantly higher than in the striatum and midbrain.  相似文献   

7.
The developmental change of endogenous glutamate, as correlated to that of gamma-glutamyl transferase and other glutamate metabolizing enzymes such as phosphate activated glutaminase, glutamate dehydrogenase and aspartate, GABA and ornithine aminotransferases, has been investigated in cultured cerebral cortex interneurons and cerebellar granule cells. These cells are considered to be GABAergic and glutamatergic, respectively. Similar studies have also been performed in cerebral cortex and cerebellum in vivo. The developmental profiles of endogenous glutamate in cultured cerebral cortex interneurons and cerebellar granule cells corresponded rather closely with that of gamma-glutamyl transferase and not with other glutamate metabolizing enzymes. In cerebral cortex and cerebellum in vivo the developmental profiles of endogenous glutamate, gamma-glutamyl transferase and phosphate activated glutaminase corresponded with each other during the first 14 days in cerebellum, but this correspondence was less good in cerebral cortex. During the time period from 14 to 28 days post partum the endogenous glutamate concentration showed no close correspondence with any particular enzyme. It is suggested that gamma-glutamyltransferase regulates the endogenous glutamate concentration in culture neurons. The enzyme may also be important for regulation of endogenous glutamate in brain in vivo and particularly in cerebellum during the first 14 days post partum. Gamma-glutamyl transferase in cultured neurons and brain tissue in vivo appears to be devoid of maleate activated glutaminase.Abbreviations used Asp-T aspartate aminotransferase (EC 2.6.1.1) - GABA-T GABA aminotransferase (EC 2.6.1.19) - GAD glutamate decarboxylase (EC 4.1.1.15) - gamma-GT gamma-glutamyl transferase (gamma-glutamyl transpeptidase) (EC. 2.3.2.2) - Glu glutamate - GDH glutamate dehydrogenase (EC 1.4.1.3) - GS glutamine synthetase (EC 6.3.1.2) - MAG maleate activated glutaminase - Orn-T ornithine aminotransferase (EC 2.6.1.13) - PAG phosphate activated glutaminase (EC 3.5.1.1)  相似文献   

8.
The NGF content in each region of the brain of four-week-old rats was ranked in the decreasing order of cerebral cortex, hippocampus, cerebellum, midbrain/diencephalon, and pons/medulla ob-longata, and the NGF concentration, in the decreasing order of hippocampus, cerebral cortex, cerebellum, midbrain/diencephalon, and pons/medulla oblongata in both AFD and SFD groups. The NGF content and concentration in the cerebral cortex were about the same value at each age between those in the AFD and SFD groups. Those in the hippocampus were a little higher in the SFD group than in the AFD group at the ages of three and four weeks, unlike those in the other regions, where the values for the cerebellum, midbrain/diencephalon and pons/medulla oblongata tended to be somewhat higher in the AFD group than in the SFD group. The NGF concentrations in the hippocampus and cerebral cortex increased with growth: the concentration in the hippocampus at four weeks of age was about 4-fold of that at one week in the AFD group and about 5.7-fold of that at one week in the SFD group; and likewise the concentration in the cerebral cortex at four weeks of age was about 5.3-fold in the AFD group and about 7-fold in the SFD group. The NGF concentrations in the cerebellum decreased, and those in midbrain/diencephalon and pons/medulla oblongata hardly changed with growth in either AFD or SFD group. From these results NGF may have stronger implications for the neuronal growth in the hippocampus compared with those in the lower brain regions of the SFD rats.  相似文献   

9.
100 mg of taurine per kg body weight had been administered intraperitoneally and 30 min after the administration the animals were sacrificed. Glutamate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, glutaminase, glutamine synthetase, glutamate decarboxylase and GABA aminotransferase along with the content of glutamate and GABA in cerebral cortex, cerebellum and brain stem were studied and compared with the same obtained in the rats treated with normal saline in place of taurine. The results indicated a significant decrease in the activity of glutamate dehydrogenase in cerebral cortex and cerebellum and a significant increase in brain stem. Glutaminase and glutamine synthetase were found to increase significantly both in cerebral cortex and cerebellum. The activities of glutamate decarboxylase was found to increase in all the three regions along with a significant decrease in GABA aminotransferase while the content of glutamate showed a decrease in all the three brain regions, the content of GABA was observed to increase significantly. The above effects of taurine on the metabolism of glutamate and GABA are discussed in relation to the functional role of GABA and glutamate. The results indicate that taurine administration would result in a state of inhibition in brain.  相似文献   

10.
The effect of intermittent normobaric hypoxia and of biological pyrimidines (uridine and cytidine) on the specific activities of some enzymes related to cerebral energy metabolism were studied. Measurement were carried out on the following: (a) homogenate in toto; (b) purified mitochondrial fraction; (c) crude synaptosomal fraction, in different areas of rat brain: cerebral cortex, hippocampus, corpus striatum, hypothalamus, cerebellum, and medulla oblongata. Intermittent normobaric hypoxia (12 hours daily for 5 days) caused modifications of the enzyme activities in the homogenate in toto (decrease of hexokinase in cerebellum; increase of pyruvate kinase in medulla oblongata), in the purified mitochondrial fraction (increase of succinate dehydrogenase in the corpus striatum) and in the crude synaptosomal fraction (decrease of cytochrome oxidase activity in cerebral cortex, hippocampus, and cerebellum; decrease of malate dehydrogenase in hippocampus and cerebellum; decrease of lactate dehydrogenase in cerebellum). Daily treatment with cytidine or uridine altered some enzyme activities either affected or unaffected by intermittent hypoxia.  相似文献   

11.
Abstract: Radiolabelled glutamine and glucose were infused into lateral ventricles of rats in order to label transmitter amino acid pools in vivo . Brain regions close to the lateral ventricle (hippocampus, corpus striatum, hypothalamus) were labelled more effectively than more distant structures such as cerebral cortex or cerebellum. All regions were labelled to much the same extent over 30-150 min by [U-14C]glucose, [U-14C]glutamine, or [3H]glutamine administered alone or together in doublelabel experiments when allowance was made for any differences in precursor specific radioactivities. Slices of cerebral cortex or hippocampus from brains labelled in vivo were incubated and stimulated in vitro with veratrine (75 μ M ); tetrodotoxin (1 μ M ) was present in the control medium. Single-label experiments showed that [U-14C]- glutamine was more effective than [U-14C]glucose for labelling releasable glutamate and GABA. Double-label experiments showed that [3H]glutamine and [U-14C]- glucose given together in vivo labelled glutamate and GABA releasable in vitro to a similar extent. Both types of experiment empbasise the large contribution made by glutamine in vivo to pools of transmitter glutamate and GABA.  相似文献   

12.
Brain tissue was obtained at autopsy from nine cirrhotic patients dying in hepatic coma and from an equal number of controls, free from neurological, psychiatric, or hepatic diseases, matched for age and time interval from death to freezing of dissected brain samples. Glutamine, glutamate, aspartate, and gamma-aminobutyric acid (GABA) levels were measured in homogenates of cerebral cortex (prefrontal and frontal), caudate nuclei, hypothalamus, cerebellum (cortex and vermis), and medulla oblongata as their o-phthalaldehyde derivatives by HPLC using fluorescence detection. Glutamine concentrations were found to be elevated two- to fourfold in all brain structures, the largest increases being observed in prefrontal cortex and medulla oblongata. Glutamate levels were selectively decreased in prefrontal cortex (by 20%), caudate nuclei (by 27%), and cerebellar vermis (by 17%) from cirrhotic patients. On the other hand, GABA content of autopsied brain tissue from these patients was found to be within normal limits in all brain structures. It is suggested that such region-selective reductions of glutamate may reflect loss of the amino acid from the releasable (neurotransmitter) pool. These findings may be of significance in the pathogenesis of hepatic encephalopathy resulting from chronic liver disease.  相似文献   

13.
We have previously shown that short-lasting reduction of cerebral blood flow by bilateral clamping of carotid arteries (BCCA) results in long-lasting increase in regional GABA concentration and decrease in seizure susceptibility in rats. In the present experiments, the effect of BCCA on GABA turnover and the enzymes involved in GABA synthesis and degradation were studied in rats. Regional GABA turnover was measured by means of GABA accumulation induced by the GABA-transaminase (GABA-T) inhibitor aminooxyacetic acid (AOAA). Fourteen days after BCCA, GABA turnover was significantly increased in hippocampus, substantia nigra and cortex, but not different from sham-operated controls in several other brain regions, including striatum, hypothalamus and cerebellum. The activity of glutamate decarboxylase (GAD) measured ex vivo did not show any changes in investigated structures, while the activity of GABA-T was slightly increased in hippocampus. The increased GABA turnover in some brain regions may explain our previous findings of increased GABA content in these brain regions and decreased sensitivity of BCCA treated animals to the GABAA-receptor antagonist bicuculline.  相似文献   

14.
The reaction of the rat adrenal cortex and medulla to stress was absent under conditions of compensatory activations of function of hypothalamic-pituitary-adrenal system. At the same time, glutamate decarboxylase activity was increased in the hypothalamus, decreased in the hyppocampus, and remained unchanged in medulla oblongata and cortex of cerebral hemispheres of hemiadrenalectomized rats after stress as compared to rats without stress. On the contrary, the intensity of specific GABA binding by synaptic membranes of medulla oblongata of hemiadrenalectomized rats was increased in response to stress effect it was decreased in the cortex of cerebral hemispheres, and remained unchanged in the hyppocampus.  相似文献   

15.
Regional Development of Glutamate Dehydrogenase in the at Brain   总被引:1,自引:0,他引:1  
The development of glutamate dehydrogenase enzyme activity in rat brain regions has been followed from the late foetal stage to the adult and through to the aged (greater than 2 years) adult. In the adult brain the enzyme activity was greatest in the medulla oblongata and pons greater than midbrain = hypothalamus greater than cerebellum = striatum = cortex. In the aged adult brain, glutamate dehydrogenase activity was significantly lower in the medulla oblongata and pons when compared to the 90-day-old adult value, but not in other regions. The enzyme-specific activity of nonsynaptic (free) mitochondria purified from the medulla oblongata and pons of 90-day-old animals was about twice that of mitochondria purified from the striatum and the cortex. The specific activity of the enzyme in synaptic mitochondria purified from the above three brain regions, however, remained almost constant.  相似文献   

16.
In this study, we investigated the role of GABAergic and glutamatergic systems in the anticonvulsant action of 3-alkynyl selenophene (3-ASP) in a pilocarpine (PC) model of seizures. To this purpose, 21 day-old rats were administered with an anticonvulsant dose of 3-ASP (50 mg/kg, per oral, p.o.), and [(3)H]γ-aminobutyric acid (GABA) and [(3)H]glutamate uptakes were carried out in slices of cerebral cortex and hippocampus. [(3)H]GABA uptake was decreased in cerebral cortex (64%) and hippocampus (58%) slices of 21 day-old rats treated with 3-ASP. In contrast, no alteration was observed in [(3)H]glutamate uptake in cerebral cortex and hippocampus slices of 21 day-old rats that received 3-ASP. Considering the drugs that increase synaptic GABA levels, by inhibiting its uptake or catabolism, are effective anticonvulsants, we further investigated the possible interaction between sub-effective doses of 3-ASP and GABA uptake or GABA transaminase (GABA-T) inhibitors in PC-induced seizures in 21 day-old rats. For this end, sub-effective doses of 3-ASP (10 mg/kg, p.o.) and DL-2,4-diamino-n-butyric acid hydrochloride (DABA, an inhibitor of GABA uptake--2 mg/kg, intraperitoneally; i.p.) or aminooxyacetic acid hemihydrochloride (AOAA; a GABA-T inhibitor--10 mg/kg, i.p.) were co-administrated to 21 day-old rats before PC (400 mg/kg; i.p.) treatment, and the appearance of seizures was recorded. Results demonstrated that treatment with AOAA and 3-ASP or DABA and 3-ASP significantly abolished the number of convulsing animals induced by PC. The present study indicates that 3-ASP reduced [(3)H]GABA uptake, suggesting that its anticonvulsant action is related to an increase in inhibitory tonus.  相似文献   

17.
The contents of gamma-aminobutyric acid (GABA) and glutamate (GL) as well as GABA-aspartate- and alanine aminotransferase activities were measured in rat cerebellum, cerebral cortex and truncus cerebri 1, 3, 6, 24 and 48 hr following total-body gamma-irradiation (60Co) with a dose of 30 Gy. All the indices under study changed in a similar way in the cortex and truncus cerebri while in the cerebellum, GABA level increased and GABA-alpha-ketoglutarate aminotransfearse activity decreased 60 min after irradiation. The levels of GABA and GL in the cortex and truncus cerebri decreased immediately and increased 24 hr after irradiation. Activity of aminotransferases changed in a phase manner: changes in aspartate- and alanine aminotransferase activity were more pronounced than those of GABA-alpha-ketoglutarate aminotransferase activity and correlated with the glutamate level changes.  相似文献   

18.
The effect of bilateral cerebral ischemia on noradrenaline, dopamine, and serotonin concentrations in six brain regions (i.e., the cerebral cortex, striatum, hippocampus, midbrain-diencephalon, cerebellum, and pons-medulla oblongata) was examined in the gerbil stroke model. The relative changes in regional cerebral blood flow after bilateral common carotid occlusion were also assessed using the radioactive microsphere technique. At 1 h after bilateral carotid occlusion, a significant decrease of monoamine concentration was observed in the cerebral cortex, striatum, hippocampus, and midbrain-diencephalon whereas no significant change was detected in the cerebellum and pons-medulla oblongata. The fall in NA content was most prominent in the cerebral cortex and hippocampus and percentage reductions of dopamine and serotonin were greatest in the striatum and cerebral cortex, respectively. These results suggest that the monoamine neurons in various brain regions might have different vulnerabilities to ischemic insult and show no evidence of transtentorial diaschisis.  相似文献   

19.
Zusammenfassung —Die Aktivitäten der Glutamat-Decarboxylase, Glutamat-Oxalacetat-Transaminase, Glutamat-Pyruvat-Transaminase, Glutamat-Dehydrogenase und Glutamin-synthetase sowie die Konzentration der freien Aminosäuren und des Ammoniaks wurden in neun Hirnregionen des Hundes (Amygdalae, Thalamus, Nucleus caudatus, Hippocampus, Temporalpol, Gyrus cinguli, Kleinhirnmark, Kleinhirnrinde, Medulla oblongata) in der präkonvulsiven Phase nach intracisternaler Injektion von l-Glutamat bzw. Pyridoxal-5-phosphat bestimmt. Sechs der neun untersuchten Gebiete zeigten keine auffälligen Stoffwechselveränderungen. Lediglich im Amygdalae, Hippocampus und in der Medulla oblongata konnten deutliche Unterschiede verschiedener Enzymaktivitäten und Substratkonzentrationen beobachtet werden. Die Erhöhung des Glutamats im Hippocampus erscheint wegen der Übereinstimmung mit den an den Rattengehirnen gefundenen Veränderungen am wichtigsten und wird als möglicher Ausgangspunkt für einen cerebralen Anfall diskutiert. Abstract —The activities of glutamate decarboxylase, aspartate aminotransferase (glutamic-oxalacetic transaminase), EC 2.6.1.1 alanine aminotransferase (glutamic-pyruvic transaminase EC 2.6.1.2), glutamate dehydrogenase and glutamine synthetase, as well as the concentration of free amino acids and ammonium were determined in nine regions of the dog brain (nucleus amygdalae, thalamus, nucleus caudatus, hippocampus, temporal lobe, gyrus cinguli, cerebellar marrow, cerebellar cortex, medulla oblongata) in the preconvulsive phase after injections of l-glutamate and pyridoxal-5-phosphate. In six of the nine regions examined there were no considerable metabolic changes. Marked changes in different enzyme activities and substrate concentrations were observed in the nucleus amygdalae, hippocampus and medulla oblongata. The increase of glutamate in the hippocampus seems to be of great importance in view of the agreement with alterations found in the brains of rats, and this is regarded as a starting point for cerebral seizures.  相似文献   

20.
We evaluated whether regional differences in the magnitude of glutamate, gamma-aminobutyric acid (GABA), and glycine release could explain why some regions are vulnerable to ischemia whereas others are spared. By means of the microdialysis technique, the temporal profile of ischemia-induced changes in extracellular levels of glutamate, GABA, and glycine was compared in regions that demonstrate differing susceptibilities to a 10- and 20-min ischemic insult (dorsal hippocampus, anterior thalamus, somatosensory cortex, and dorsolateral striatum). The degree of ischemia (as established by local cerebral blood flow reduction) and the magnitude of histopathological neuronal damage were also evaluated in these regions. The blood flow reduction was severe and uniform in all regions; however, the histopathological outcome illustrated a different pattern. Whereas the CA1 sector of the hippocampus was severely damaged, the thalamus and cortex were relatively spared from both 10 and 20 min of ischemia. Striatal neurons were resistant to a 10-min insult but severely damaged after 20 min of ischemia. Ischemia-induced increase in glutamate and GABA content were of a similar magnitude and temporal profile in all four brain regions. A uniform increase in extracellular glycine levels was also observed in all four brain structures. The postischemic response, however, was different. Glycine levels remained twofold higher than baseline in the hippocampus but fell to baseline in the cortex and thalamus after both 10- and 20-min insults. In the striatum, glycine levels returned to baseline after 10 min of ischemia but remained relatively high after a 20-min insult.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号