首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helicases are molecular motor proteins that couple the hydrolysis of NTP to nucleic acid unwinding. The growing number of DNA helicases implicated in human disease suggests that their vital specialized roles in cellular pathways are important for the maintenance of genome stability. In particular, mutations in genes of the RecQ family of DNA helicases result in chromosomal instability diseases of premature aging and/or cancer predisposition. We will discuss the mechanisms of RecQ helicases in pathways of DNA metabolism. A review of RecQ helicases from bacteria to human reveals their importance in genomic stability by their participation with other proteins to resolve DNA replication and recombination intermediates. In the light of their known catalytic activities and protein interactions, proposed models for RecQ function will be summarized with an emphasis on how this distinct class of enzymes functions in chromosomal stability maintenance and prevention of human disease and cancer.  相似文献   

2.
3.
RecQ family helicases play important roles in coordinating genome maintenance pathways in living cells. In the absence of functional RecQ proteins, cells exhibit a variety of phenotypes, including increased mitotic recombination, elevated chromosome missegregation, hypersensitivity to DNA-damaging agents, and defects in meiosis. Mutations in three of the five human RecQ family members give rise to genetic disorders associated with a predisposition to cancer and premature aging, highlighting the importance of RecQ proteins and their cellular activities for human health. Current evidence suggests that RecQ proteins act at multiple steps in DNA replication, including stabilization of replication forks and removal of DNA recombination intermediates, in order to maintain genome integrity. The cellular basis of RecQ helicase function may be explained through interactions with multiple components of the DNA replication and recombination machinery. This review focuses on biochemical and structural aspects of the RecQ helicases and how these features relate to their known cellular function, specifically in preventing excessive recombination.  相似文献   

4.
RecQ family helicases play important roles in coordinating genome maintenance pathways in living cells. In the absence of functional RecQ proteins, cells exhibit a variety of phenotypes, including increased mitotic recombination, elevated chromosome missegregation, hypersensitivity to DNA-damaging agents, and defects in meiosis. Mutations in three of the five human RecQ family members give rise to genetic disorders associated with a predisposition to cancer and premature aging, highlighting the importance of RecQ proteins and their cellular activities for human health. Current evidence suggests that RecQ proteins act at multiple steps in DNA replication, including stabilization of replication forks and removal of DNA recombination intermediates, in order to maintain genome integrity. The cellular basis of RecQ helicase function may be explained through interactions with multiple components of the DNA replication and recombination machinery. This review focuses on biochemical and structural aspects of the RecQ helicases and how these features relate to their known cellular function, specifically in preventing excessive recombination.  相似文献   

5.
RecQ helicases play an important role in preserving genomic integrity, and their cellular roles in DNA repair, recombination, and replication have been of considerable interest. Of the five human RecQ helicases identified, three are associated with genetic disorders characterized by an elevated incidence of cancer or premature aging: Werner syndrome, Bloom syndrome, and Rothmund-Thomson syndrome. Although the biochemical properties and protein interactions of the WRN and BLM helicases defective in Werner syndrome and Bloom syndrome, respectively, have been extensively investigated, less information is available concerning the functions of the other human RecQ helicases. We have focused our attention on human RECQ1, a DNA helicase whose cellular functions remain largely uncharacterized. In this work, we have characterized the DNA substrate specificity and optimal cofactor requirements for efficient RECQ1-catalyzed DNA unwinding and determined that RECQ1 has certain properties that are distinct from those of other RecQ helicases. RECQ1 stably bound to a variety of DNA structures, enabling it to unwind a diverse set of DNA substrates. In addition to its DNA binding and helicase activities, RECQ1 catalyzed efficient strand annealing between complementary single-stranded DNA molecules. The ability of RECQ1 to promote strand annealing was modulated by ATP binding, which induced a conformational change in the protein. The enzymatic properties of the RECQ1 helicase and strand annealing activities are discussed in the context of proposed cellular DNA metabolic pathways that are important in the maintenance of genomic stability.  相似文献   

6.
Five members of the RecQ subfamily of DEx-H-containing DNA helicases have been identified in both human and mouse, and mutations in BLM, WRN, and RECQ4 are associated with human diseases of premature aging, cancer, and chromosomal instability. Although a genetic disease has not been linked to RECQ1 mutations, RECQ1 helicase is the most highly expressed of the human RecQ helicases, suggesting an important role in cellular DNA metabolism. Recent advances have elucidated a unique role of RECQ1 to suppress genomic instability. Embryonic fibroblasts from RECQ1-deficient mice displayed aneuploidy, chromosomal instability, and increased load of DNA damage.(1) Acute depletion of human RECQ1 renders cells sensitive to DNA damage and results in spontaneous γ-H2AX foci and elevated sister chromatid exchanges, indicating aberrant repair of DNA breaks.(2) Consistent with a role in DNA repair, RECQ1 relocalizes to irradiation-induced nuclear foci and associates with chromatin.(2) RECQ1 catalytic activities(3) and interactions with DNA repair proteins(2,4,5) are likely to be important for its molecular functions in genome homeostasis. Collectively, these studies provide the first evidence for an important role of RECQ1 to confer chromosomal stability that is unique from that of other RecQ helicases and suggest its potential involvement in tumorigenesis.  相似文献   

7.
The RecQ helicases are guardians of the genome. Members of this conserved family of proteins have a key role in protecting and stabilizing the genome against deleterious changes. Deficiencies in RecQ helicases can lead to high levels of genomic instability and, in humans, to premature aging and increased susceptibility to cancer. Their diverse roles in DNA metabolism, which include a role in telomere maintenance, reflect interactions with multiple cellular proteins, some of which are multifunctional and also have very diverse functions. The results of in vitro cellular and biochemical studies have been complimented by recent in vivo studies using genetically modified mouse strains. Together, these approaches are helping to unravel the mechanism(s) of action and biological functions of the RecQ helicases.  相似文献   

8.
9.
Cells of all living organisms have evolved complex mechanisms to maintain genome stability. There is increasing evidence that spontaneous genomic instability occurs primarily during DNA replication. RecQ DNA helicases function during DNA replication and are essential for the maintenance of genome stability. In human cells, there exist five RecQ DNA helicases, and mutations of three of these helicases, encoded by the BLM, WRN and RECQL4 genes, give rise to the cancer predisposition disorders, Bloom syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS), respectively. Individuals suffering from WS and RTS also show premature aging phenotypes. Although the two remaining helicases, RECQL1 and RECQL5, have not yet been associated with heritable human diseases, a single nucleotide polymorphism of RECQL1 is associated with reduced survival of pancreatic cancer, and RecQl5 knockout mice show a predisposition to cancer. Here, we review the functions eukaryotic RecQ helicases, focusing primarily on BLM in the maintenance of genome stability through various pathways of nucleic acid metabolism and with special reference to DNA replication.  相似文献   

10.
Understanding the molecular and cellular functions of RecQ helicases has attracted considerable interest since several human diseases characterized by premature aging and/or cancer have been genetically linked to mutations in genes of the RecQ family. Although a human disease has not yet been genetically linked to a mutation in RECQ1, the prominent roles of RecQ helicases in the maintenance of genome stability suggest that RECQ1 helicase is likely to be important in vivo.To acquire a better understanding of RECQ1 cellular and molecular functions, we have investigated its protein interactions. Using a co-immunoprecipitation approach, we have identified several DNA repair factors that are associated with RECQ1 in vivo. Direct physical interaction of these repair factors with RECQ1 was confirmed with purified recombinant proteins. Importantly, RECQ1 stimulates the incision activity of human exonuclease 1 and the mismatch repair recognition complex MSH2/6 stimulates RECQ1 helicase activity. These protein interactions suggest a role of RECQ1 in a pathway involving mismatch repair factors. Regulation of genetic recombination, a proposed role for RecQ helicases, is supported by the identified RECQ1 protein interactions and is discussed.  相似文献   

11.
The RecQ family of DNA helicases have potential roles in DNA repair, replication and/or recombination pathways. In humans, a defect in the RecQ family helicases encoded by the BLM, WRN and RECQ4 genes gives rise to Bloom's (BS), Werner's (WS) and Rothmund-Thomson (RTS) syndromes, respectively. These disorders are associated with cancer predisposition and/or premature aging. In Bloom's syndrome, affected individuals are predisposed to many types of cancer at an early age. Werner's syndrome is a premature aging disorder with a complex phenotype, which includes many age-related disorders that develop from puberty, including greying and thinning of the hair, bilateral cataract formation, type II diabetes mellitus, osteoporosis and atherosclerosis. The phenotype of Rothmund-Thomson syndrome patients also consists of some features associated with premature aging, as well as predispositon to certain cancers. Here, we discuss the molecular basis of these RecQ helicase-deficient disorders.  相似文献   

12.
RecQ helicases are a ubiquitous family of DNA unwinding enzymes required to preserve genome integrity, thus preventing premature aging and cancer formation. The five human representatives of this family play non-redundant roles in the suppression of genome instability using a combination of enzymatic activities that specifically characterize each member of the family. These enzymes are in fact not only able to catalyze the transient opening of DNA duplexes, as any other conventional helicase, but can also promote annealing of complementary strands, branch migration of Holliday junctions and, in some cases, excision of ssDNA tails. Remarkably, the balance between these different activities seems to be regulated by protein oligomerization. This review illustrates the recent progress made in the definition of the structural determinants that control the different enzymatic activities of RecQ helicases and speculates on the possible mechanisms that RecQ proteins might use to promote their multiple functions.  相似文献   

13.
RecQ family helicases: roles in cancer and aging   总被引:16,自引:0,他引:16  
The RecQ family of DNA helicases includes at least three members in humans that are defective in genetic disorders associated with cancer predisposition and/or premature aging. Recent studies have shed light on the roles of RecQ helicases in suppressing 'promiscuous' genetic recombination and in ensuring accurate chromosome segregation. In particular, the biochemical properties of several family members have been characterised and functional interactions with other nuclear proteins have been defined.  相似文献   

14.
15.
Sidorova JM 《DNA Repair》2008,7(11):1776-1786
Congenital deficiency in the WRN protein, a member of the human RecQ helicase family, gives rise to Werner syndrome, a genetic instability and cancer predisposition disorder with features of premature aging. Cellular roles of WRN are not fully elucidated. WRN has been implicated in telomere maintenance, homologous recombination, DNA repair, and other processes. Here I review the available data that directly address the role of WRN in preserving DNA integrity during replication and propose that WRN can function in coordinating replication fork progression with replication stress-induced fork remodeling. I further discuss this role of WRN within the contexts of damage tolerance group of regulatory pathways, and redundancy and cooperation with other RecQ helicases.  相似文献   

16.
RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3′-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5′-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms.  相似文献   

17.
解螺旋酶RecQ家族的研究进展   总被引:1,自引:0,他引:1  
章诺贝  张吉翔 《生命科学》2007,19(2):203-207
DNA解螺旋酶RecQ家族在抑制人类肿瘤发生及早衰方面发挥着重要作用。本文介绍了RecQ家族成员的结构与生物学特性,并在此基础上对其在DNA复制、重组、修复以及在维持端粒稳定方面的作用机制作一综述。  相似文献   

18.
Five human RecQ helicases (WRN, BLM, RECQ4, RECQ5, RECQ1) exist in humans. Of these, three are genetically linked to diseases of premature aging and/or cancer. Neither RECQ1 nor RECQ5 has yet been implicated in a human disease. However, cellular studies and genetic analyses of model organisms indicate that RECQ1 (and RECQ5) play an important role in the maintenance of genomic stability. Biochemical studies of purified RECQ1 protein demonstrate that the enzyme catalyzes DNA unwinding and strand annealing, and these activities are likely to be important for its role in DNA repair. RECQ1 also physically and functionally interacts with proteins involved in genetic recombination. In this review, we will summarize our current knowledge of RECQ1 roles in cellular nucleic acid metabolism and propose avenues of investigation for future studies.  相似文献   

19.
RecQ helicases: lessons from model organisms   总被引:5,自引:1,他引:4  
RecQ DNA helicases function during DNA replication and are essential for the maintenance of genome stability. There is increasing evidence that spontaneous genomic instability occurs primarily during DNA replication, and that proteins involved in the S-phase checkpoint are a principal defence against such instability. Cells that lack functional RecQ helicases exhibit phenotypes consistent with an inability to fully resume replication fork progress after encountering DNA damage or fork arrest. In this review we will concentrate on the various functions of RecQ helicases during S phase in model organisms.  相似文献   

20.
Werner syndrome is a human premature aging disorder displaying cellular defects associated with telomere maintenance including genomic instability, premature senescence, and accelerated telomere erosion. The yeast homologue of the Werner protein (WRN), Sgs1, is required for recombination-mediated lengthening of telomeres in telomerase-deficient cells. In human cells, we report that WRN co-localizes and physically interacts with the critical telomere maintenance protein TRF2. This interaction is mediated by the RecQ conserved C-terminal region of WRN. In vitro, TRF2 demonstrates high affinity for WRN and for another RecQ family member, the Bloom syndrome protein (BLM). TRF2 interaction with either WRN or BLM results in a notable stimulation of their helicase activities. Furthermore, the WRN and BLM helicases, partnered with replication protein A, actively unwind long telomeric duplex regions that are pre-bound by TRF2. These results suggest that TRF2 functions with WRN, and possibly BLM, in a common pathway at telomeric ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号