首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor-independent IL-6 production during murine listeriosis   总被引:34,自引:0,他引:34  
We report that TNF, IL-6, and IFN-alpha/beta are produced by mice during either sublethal or lethal Listeria monocytogenes infections. The quantities of these cytokines in infected spleens increase and decrease in concordance with bacterial numbers in these organs. While all of these cytokines were present in Listeria-infected spleens, only IL-6 and IFN-alpha/beta were found in the peripheral circulation. Inasmuch as TNF has been reported to be responsible for the production of IL-6 in vivo following the inoculation of a lethal dose of the Gram-negative bacterium, Escherichia coli (Fong et al., 1989. J. Exp. Med. 170: 1627), experiments were undertaken to determine whether IL-6 production elicited by the Gram-positive bacterium, L. monocytogenes, was also TNF-dependent. It was found that the passive immunization of mice with neutralizing antibodies specific for TNF shortly before i.v. injection of a lethal or sublethal Listeria inoculum resulted in the complete neutralization of endogenously produced TNF, and in the progressive multiplication of bacteria in infected organs. It was also found that the anti-TNF IgG treatment resulted in a progressive increase in the amounts of Listeria-induced IL-6 present in spleen and blood, until the death of the host. These findings indicate that Listeria-induced IL-6 production in mice occurs primarily through a TNF-independent pathway, and correlates directly with the severity of the infection.  相似文献   

2.
The effects of exogenously administered rIL-1 alpha on elimination of viable listeriae from the liver and spleen during the course of a primary Listeria monocytogenes infection was studied. Similar numbers of L. monocytogenes were recovered from rIL-1 alpha-treated and control mice at up to 24 h after infection; however, by 48 h after infection more than 1 log10 fewer viable L. monocytogenes were recovered from the spleens of rIL-1 alpha-treated mice than from Listeria-infected controls. The difference in bacterial burden between IL-1 alpha-treated and control mice increased with time; by 7 days after infection viable L. monocytogenes had been eliminated from most rIL-1 alpha-treated mice, whereas control mice still harbored 10(4) to 10(5) L. monocytogenes per spleen and liver. Histopathologic examination confirmed that rIL-1 alpha-treated mice suffered considerably less damage to the spleen, liver, lung, and brain than did control mice. To determine whether rIL-1 alpha-mediated protection indirectly by augmenting the release of other cytokines, we determined serum levels of colony-stimulating activity and IFN activity in rIL-1 alpha-treated and control Listeria-infected mice. Treatment with rIL-alpha elicited an early burst of serum colony-stimulating activity as compared with sera from Listeria-infected control mice. These data suggest that exogenous administration of rIL-1 initiates release of colony-stimulating activity, and perhaps other cytokines, that accelerate the protective response of the infected host. Prophylactic augmentation of antimicrobial resistance by administration of rIL-1 alpha may be worthy of further evaluation.  相似文献   

3.
Interferon (IFN)-alpha/beta was induced in the circulation of mice infected intravenously with Listeria monocytogenes 24 to 72 hr after infection, but was not induced by the administration of heat-killed Listeria, listerial cell wall fraction (LCWF), or listerial soluble fraction. Appearance of IFN-alpha/beta showed a pattern similar to that of the growth of bacteria in the spleen and the liver of mice. IFN-alpha/beta production was abrogated by pretreatment of mice with anti-asialo GM1 antibody, antithymocyte serum, or hydrocortisone, but not with cyclophosphamide or carrageenan. Such treatments which suppressed IFN-alpha/beta production did not influence bacterial growth in the organs of mice in the early stage of Listeria infection. Administration of IFN-alpha/beta exogenously also did not. After 5 days of infection when the specific resistance against reinfection with Listeria was established, IFN-gamma but not IFN-alpha/beta was induced in the circulation 3 to 6 hr after stimulation with LCWF or reinfection with Listeria. IFN-gamma production was abrogated completely by cyclophosphamide and antithymocyte serum, and partially by hydrocortisone and carrageenan, but not by anti-asialo GM1 antibody in Listeria-infected mice treated with these agents before induction of IFN-gamma by LCWF. Presumably, IFN-alpha/beta might be produced by asialo GM1-bearing cells but IFN-gamma might not. However, IFN-gamma production was suppressed in Listeria-infected mice, when IFN-alpha/beta production had been inhibited by treatment with anti-asialo GM1 antibody or when the IFN produced had been neutralized with anti-mouse IFN-alpha/beta antibody. Therefore, it is conceivable that IFN-alpha/beta might be essential for the generation or the expression of antigen-specific T cells involving IFN-gamma production and acquired resistance during Listeria infection. In fact, the bacterial growth in the organs of mice in the early stage of infection was normal in IFN-alpha/beta-depleted mice but it resulted in the delay of T-cell-dependent elimination of bacteria from the organs of mice in the late stage.  相似文献   

4.
Athymic nude mice injected intramuscularly with a street strain of rabies virus were not protected against rabies by postexposure administration of beta-propiolactone-inactivated rabies vaccine. In contrast, their normal littermates were completely protected from death by the same vaccination regimens. Nude mice did not produce IgG antibody as a result of the vaccine during the test period of 15 days, whereas normal littermates produced IgG antibody from day 5 after vaccination. However, passive immunization with antirabies hyperimmune mouse ascites showed that antibody was completely ineffective in protecting either nude mice or their normal littermates against rabies when given later than 2 days after infection. No significant difference in the induction of circulating interferon by the vaccination was noted in these mice. Passive transfer of immune spleen cells to nude mice immediately after infection resulted in 30 to 37.5% protection of the mice. Passively transferred spleen cells did not produce detectable amounts of neutralizing antibody in the recipient mice except on day 2 after the transfer, when a low level of antibody was detected. These observations demonstrate the essential role of T cells in the postexposure prophylaxis of rabies in mice. The mechanisms of the failure of postexposure vaccination in nude mice are discussed.  相似文献   

5.
To clarify the role of B cells in the establishment of T cell response against intracellular bacteria, B-cell-deficient (muMT-/-) mice were infected with an intracellular bacteria, Listeria monocytogenes, and T cell response against the bacteria was analyzed. On day 6 of primary Listeria infection, spleen T cells of the muMT-/- mice showed significantly lower levels of proliferative response and IFN-gamma production than those of normal infected mice after in vitro stimulation with listerial antigen. Even in the secondary Listeria infection after immunization with viable bacteria, spleen T cells of the muMT-/- mice proliferated and produced IFN-gamma against listerial antigen at significantly lower levels than those of normal immunized mice. These results demonstrate participation of B cells in priming of Listeria-specific T cells in vivo. However, B cells failed to present Listeria antigen to Listeria-specific T cells in vitro unless Listeria antigen was solubilized. Furthermore, transfer of immune serum from Listeria-infected normal mice failed to enhance the Listeria-specific T cell response of muMT-/- mice. The results indicate that B cells support the T cell response against intracellular bacteria through a mechanism other than their Ig production or antigen presentation function.  相似文献   

6.
为探讨CD4+ CD25+ Foxp3+调节性T细胞(Treg细胞)在疟疾感染过程中对Th2极化的调控作用,利用Treg细胞消除的致死型夏氏疟原虫(Plasmodium chabaudi chabaudi AS,P.c chabaudi AS)感染鼠疟模型进行研究。结果显示,对照组小鼠在感染后8 d原虫血症达到峰值40.5%,随后迅速下降,于感染后18 d小鼠自愈。相比,Treg细胞消除组于感染后10 d,原虫血症水平迅速上升至32%,随后小鼠相继死亡。在感染后8~10 d,Treg细胞消除小鼠脾脏CD4+ CD25+ Foxp3+细胞占CD4+细胞百分比含量明显低于对照组。同时,血清疟原虫特异性抗体IgG1和IgG2a水平均明显降低。结果提示,P.c chabaudi AS感染中CD4+ CD25+ Foxp3+细胞参与调控Th2型免疫应答的极化,进而干预疟原虫清除。  相似文献   

7.
Production of IFN-gamma by CD4 T cells is generally thought to be mediated by TCR triggering, however, Ag-nonspecific activation of effector CD8 T cells has been reported in infection models. In this study, we demonstrate that Ag-experienced CD4 T cells in the spleen of Salmonella-infected mice acquire the capacity to rapidly secrete IFN-gamma in response to stimulation with bacterial lysate or LPS. This innate responsiveness of T cells was transient and most apparent during, and immediately following, active Salmonella infection. Furthermore, innate T cell production of IFN-gamma in response to bacterial lysate or LPS was Ag independent and could be induced in Listeria-infected mice and in the absence of MHC class II expression. IL-18 was required for maximal innate responsiveness of CD4 T cells in Salmonella-infected mice and for optimal bacterial clearance in vivo. These data demonstrate that CD4 T cells acquire the capacity to respond to innate stimuli during active bacterial infection, a process that may contribute significantly to amplifying effector responses in vivo.  相似文献   

8.
Resistance of mice to infection by Listeria monocytogenes involves a biphasic response. The first phase consists of the first 48 h after infection, during which there is multiplication of Listeria in the liver and spleen of infected mice. In these nonimmune mice, macrophages and polymorphonuclear leukocytes are the effector cells involved in controlling multiplication. In the second phase, cell-mediated immunity develops, beginning on day 2, during which multiplication of Listeria is prevented by macrophages possessing increased microbicidal activity that is mediated through the action of lymphokines released by immunologically committed T lymphocytes. The purpose of the present study was to define a role for natural killer (NK) cells in natural resistance to Listeria during the first 48 h after infection, prior to the development of specific immunity. Splenic NK cell activity was enhanced following a sublethal intravenous injection of viable Listeria as early as 24 h after injection and remained elevated throughout the nonimmune phase of infection. Interestingly, treatment of mice with anti-asialo-GM1 significantly enhanced the ability of mice to clear Listeria from the spleen relative to infected controls possessing intact NK cell populations. This was evidenced by 23-fold fewer bacteria obtained from the spleens of anti-asialo-GM1-treated mice. In addition, Percoll-enriched NK cell populations obtained from 48-hour Listeria-infected mice do not exhibit in vitro listericidal activity. These observations suggest a regulatory role of NK cells in resistance against Listeria and preclude a role for NK cells in direct cytolysis. Perhaps these cells modulate the immune response to Listeria by down-regulating the activity of the immune cells crucial to listerial resistance.  相似文献   

9.
Antibody production to sheep erythrocytes (SRBC) or hapten-conjugated SRBC (TNP-SRBC) was studied in mice with chronic Trypanosoma cruzi infections. Studies in vivo demonstrated that both IgM and IgG anti-SRBC responses were suppressed during chronic infection. Secondary IgG responses were suppressed regardless of whether the primary immunization was given before or after infection. The ability of cells from infected mice to provide help for antibody production was examined in vitro. Anti-SRBC responses were restored to cultures of whole spleen cells from infected mice by the addition of interleukin 2 (IL 2)-rich supernatants, indicating that these cells were capable of antibody production when sufficient help was provided. T cells from SRBC-primed infected mice were unable to provide significant help to normal B cell/M phi cultures for in vitro anti-TNP or anti-SRBC responses. The percentages of Thy-1+, Lyt-1+, and Lyt-2+ spleen cells were not significantly different between normal and infected mice. Anti-TNP and anti-SRBC responses were restored to cultures that contained T cells from infected mice and normal B cell/M phi by the addition of IL 2-rich spleen cell supernatants. The suppression of in vitro antibody responses in mice with chronic T. cruzi infections was associated with a lack of T cell help, which was provided by exogenous spleen cell supernatant.  相似文献   

10.
TNF is an important inflammatory mediator and a target for intervention. TNF is produced by many cell types and is involved in innate inflammation as well as adaptive immune responses. CD8 T cells produce TNF and can also respond to TNF. Deficiency of TNF or TNFR2 has been shown to affect anti-viral immunity. However, as the complete knockout of TNF or its receptors has effects on multiple cell types as well as on lymphoid architecture, it has been difficult to assess the role of TNF directly on T cells during viral infection. Here we have addressed this issue by analyzing the effect of CD8 T cell intrinsic TNF/TNFR2 interactions during respiratory influenza infection in mice, using an adoptive transfer model in which only the T cells lack TNF or TNFR2. During a mild influenza infection, the capacity of the responding CD8 T cells to produce TNF increases from day 6 through day 12, beyond the time of viral clearance. Although T cell intrinsic TNF is dispensable for initial expansion of CD8 T cells up to day 9 post infection, intrinsic TNF/TNFR2 interactions potentiate contraction of the CD8 T cell response in the lung between day 9 and 12 post infection. On the other hand, TNF or TNFR2-deficient CD8 T cells in the lung express lower levels of IFN-γ and CD107a per cell than their wild type counterparts. Comparison of TNF levels on the TNFR2 positive and negative T cells is consistent with TNF/TNFR2 interactions inducing feedback downregulation of TNF production by T cells, with greater effects in the lung compared to spleen. Thus CD8 T cell intrinsic TNF/TNFR2 interactions fine-tune the response to influenza virus in the lung by modestly enhancing effector functions, but at the same time potentiating the contraction of the CD8 T cell response post-viral clearance.  相似文献   

11.
The invasion of the CNS by pathogens poses a major risk for damage of the highly vulnerable brain. The aim of the present study was to analyze immunological mechanisms that may prevent spread of infections to the CNS. Intraperitoneal application of Listeria monocytogenes to mice induced infection of the spleen, whereas pathogens remained absent from the brain. Interestingly, Listeria-specific CD4 and CD8 T cells homed to the brain and persisted intracerebrally for at least 50 days after both primary and secondary infection. CD4 and CD8 T cells resided in the leptomeninges, in the choroid plexus, and, in low numbers, in the brain parenchyma. CD4 and CD8 T cells isolated from the brain early after infection (day 7) were characterized by an activated phenotype with spontaneous IFN-gamma production, whereas at a later stage of infection (day 28) restimulation with Listeria-specific peptides was required for the induction of IFN-gamma production by CD4 and CD8 T cells. In contrast to splenic T cells, T cells in the brain did not exhibit cytotoxic activity. Adoptively transferred T cells isolated from the brains of Listeria-infected mice reduced the bacterial load in cerebral listeriosis. The frequency of intracerebral Listeria-specific T cells was partially regulated by the time of exposure to Listeria and cross-regulated by CD4 and CD8 T cells. Collectively, these data reveal a novel T cell-mediated pathway of active immunosurveillance of the CNS during bacterial infections.  相似文献   

12.
The role of endogenous IL-4 in resistance to Listeria monocytogenes infection was investigated by in vivo administration of an anti-IL-4 mAb (11B11). Mice treated with 0.01 to 0.4 mg of anti-IL-4 mAb before L. monocytogenes challenge demonstrated a significantly reduced peak bacterial burden in their livers and spleens and accelerated bacterial clearance from these organs. In addition, histopathologic damage to the liver was reduced. Maximal protection was achieved by i.p. injection of 0.1 mg of anti-IL-4 mAb 2 or 24 h before L. monocytogenes challenge; treatment with anti-IL-4 mAb after injection of L. monocytogenes had no effect on antilisterial resistance. Anti-IL-4 mAb-treated and control Listeria-infected mice exhibited similar patterns of IFN-gamma, IL-2, and IL-4 mRNA, as determined by polymerase chain reaction amplification of RNA extracted from spleen cells. In both anti-IL-4 mAb-treated and control mice, IFN-gamma, IL-2, and IL-4 mRNA were produced within 4 h after challenge. Cytokine mRNA levels were similar for anti-IL-4 mAb-treated and control mice, except for the greater amount of IFN-gamma mRNA in the anti-IL-4 mAb-treated mice at 4 h after L. monocytogenes challenge. IFN-gamma and IL-2 mRNA levels were sustained for at least 5 days, whereas IL-4 mRNA was undetectable by 3 days after challenge. There were no significant differences in the amounts of IL-4 and IFN-gamma detected in culture supernatants of spleen cells from anti-IL-4 mAb-treated and control Listeria-infected mice. These results suggest that endogenous IL-4, a cytokine thought to be produced principally by Th2 cells, has a deleterious effect on host defense against the facultative intracellular pathogen L. monocytogenes. Administration of an anti-IL-4 mAb increases antilisterial resistance without causing a detectable shift to a Th1 type of cytokine response.  相似文献   

13.
Phenotypes and functions of T cells in the liver were studied after an i.p. inoculation with viable Listeria monocytogenes in mice. T cells in the liver of untreated C3H/HeN mice (C3H; H-2k, Mls-2a) contain Thy-1.2+TCR-alpha beta + cells as a majority and Thy-1.2+TCR-gamma delta + cells and Thy-1.2-TCR-gamma delta + cells as minorities. The liver of untreated C3H mice did not contain T cells expressing V beta 3 and V beta 11, which are potentially autoreactive against self-superantigens of Mls-2a and Dvbl, respectively. On days 3 to 6 after infection, Thy-1.2-CD4lowTCR-alpha beta + T cells or Thy-1.2-TCR-gamma delta + T cells increased significantly in number and proportion in the liver whereas T cells with these phenotypes were hardly detected in the spleen, lymph nodes, peripheral blood, and peritoneal cavity during the course of the infection. The Thy-1.2-CD4lowTCR-alpha beta T cells contained V beta 3 or V beta 11-bearing cells in high frequencies. The potentially autoreactive V beta 3- or V beta 11-bearing T cells disappeared from the liver on day 7 after infection. Furthermore, the V beta 3+ and V beta 11+ cells but not V beta 8+ cells disappeared after culture for 24 h at 37 degrees C. In vitro stimulation of liver T cells using anti-V beta 11 mAb showed no proliferative response. These results suggest that the potentially autoreactive clones with Thy-1.2-CD4low phenotypes, which increased in number after listerial infection, may be anergized after interaction with self-Ag and may be programmed to die. These potentially autoreactive clones induced in the liver of Listeria-infected mice may not be functionally relevant to the host defense against Listeria.  相似文献   

14.
A mouse model for the study of postexposure prophylaxis of rabies was established. Mice injected intramuscularly with a street strain of rabies virus were significantly protected from death by five daily 0.2-ml doses of inactivated rabies vaccine of chick embryo cell culture origin initiated immediately or 3 hr after infection. In these mice, a large amount of circulating interferon was induced as early as 1 hr after the first dose of vaccine and lasted until at least 12 hr but no such amount of interferon was induced by additional doses of vaccine. Serum antibody was first detected in the mice on day 6. It was noted that some of the surviving mice manifested an ataxia or paralysis of the legs. Increasing mortality rates were shown in mice treated with decreasing doses of the vaccine. Passive protection tests using concentrated IgG and IgM antibodies with equivalent neutralization titers showed that IgG antibody gave total protection when given 24 hr before the infection, while it was almost totally ineffective in reducing the mortality when given 2 days or more after infection. IgM antibody did not protect the mice even when given 24 hr before infection. These results suggest that interferon production is more important than antibody production in the initial stages of protection by postexposure vaccination. However, the mechanisms of postexposure prophylaxis in this model could not be explained only by the interferon produced by the vaccine and the possible contributions of additional mechanisms were suggested.  相似文献   

15.
Immunity to Toxoplasma gondii critically depends on TNFR type I-mediated immune reactions, but the precise role of the individual ligands of TNFR1, TNF and lymphotoxin-alpha (LTalpha), is still unknown. Upon oral infection with T. gondii, TNF(-/-), LTalpha(-/-), and TNF/LTalpha(-/-) mice failed to control intracerebral T. gondii and succumbed to an acute necrotizing Toxoplasma encephalitis, whereas wild-type (WT) mice survived. Intracerebral inducible NO synthase expression and-early after infection-splenic NO levels were reduced. Additionally, peritoneal macrophages produced reduced levels of NO upon infection with T. gondii and had significantly reduced toxoplasmastatic activity in TNF(-/-), LTalpha(-/-), and TNF/LTalpha(-/-) mice as compared with WT animals. Frequencies of parasite-specific IFN-gamma-producing T cells, intracerebral and splenic IFN-gamma production, and T. gondii-specific IgM and IgG titers in LTalpha(-/-) and TNF/LTalpha(-/-) mice were reduced only early after infection. In contrast, intracerebral IL-10 and IL-12p40 mRNA expression and splenic IL-2, IL-4, and IL-12 production were identical in all genotypes. In addition, TNF(-/-), LTalpha(-/-), and TNF/LTalpha(-/-), but not WT, mice succumbed to infection with the highly attenuated ts-4 strain of T. gondii or to a subsequent challenge infection with virulent RH toxoplasms, although they had identical frequencies of IFN-gamma-producing T cells as compared with WT mice. Generation and infection of bone marrow reconstitution chimeras demonstrated an exclusive role of hematogeneously produced TNF and LTalpha for survival of toxoplasmosis. These findings demonstrate the crucial role of both LTalpha and TNF for control of intracerebral toxoplasms.  相似文献   

16.
Immune control of Brucella abortus 2308 infections in BALB/c mice   总被引:5,自引:0,他引:5  
BALB/c mice infected with Brucella abortus strain 2308 have 10-fold higher levels of bacteria during the plateau phase of infection (the time period when the number of colony-forming units in vivo remains consistent) than the more resistant C57BL/10 mice. This is due to a cessation of interferon-gamma (IFN-gamma) production that begins after the first week of infection and continues until the end of the plateau phase at least 6 weeks post infection. Despite the lack of IFN-gamma production during this time BALB/c mice are able to prevent an increase in bacterial colony-forming units. Here it was shown that both tumor necrosis factor (TNF)-alpha and CD8 T cells were involved in controlling bacterial numbers in BALB/c mice during this time. That is, neutralization of TNF-alpha or depletion of CD8 T cells with monoclonal antibodies resulted in a significant increase in the number of splenic colony-forming units recovered at 3 weeks post infection. In the absence of CD8 T cells there was also a significant increase in splenic macrophages. The role of TNF-alpha may depend upon the presence of interferon-gamma early in the infection since when TNF-alpha was neutralized in interferon-gamma gene knockout mice there was a marked increase in splenic macrophages, NK cells and neutrophils but not a significant increase in colony-forming units.  相似文献   

17.
It is generally believed that the production of influenza-specific IgG in response to viral infection is dependent on CD4 T cells. However, we previously observed that CD40-deficient mice generate influenza-specific IgG during a primary infection, suggesting that influenza infection may elicit IgG responses independently of CD4 T cell help. In the present study, we tested this hypothesis and show that mice lacking CD40 or CD4 T cells produce detectable titers of influenza-specific IgG and recover from influenza infection in a manner similar to that of normal mice. In contrast, mice completely lacking B cells succumb to influenza infection, despite the presence of large numbers of functional influenza-specific CD8 effector cells in the lungs. Consistent with the characteristics of a T-independent Ab response, long-lived influenza-specific plasma cells are not found in the bone marrow of CD40-/- and class II-/- mice, and influenza-specific IgG titers wane within 60 days postinfection. However, despite the short-lived IgG response, CD40-/- and class II-/- mice are completely protected from challenge infection with the same virus administered within 30 days. This protection is mediated primarily by B cells and Ab, as influenza-immune CD40-/- and class II-/- mice were still resistant to challenge infection when T cells were depleted. These data demonstrate that T cell-independent influenza-specific Ab promotes the resolution of primary influenza infection and helps to prevent reinfection.  相似文献   

18.
We have studied the expression of Ia molecules by macrophages from mice with severe combined immunodeficiency (CB-17 scid) that lack demonstrable T cell and B cell functions. CB-17 scid mice had approximately normal numbers of Ia-bearing macrophages in the peritoneal cavity, spleen, and liver. Peritoneal macrophages responded in culture to T cell-derived lymphokines with enhanced expression of Ia molecules. However, unlike immunocompetent controls, SCID mice could not enhance Ia expression in an antigen-specific T cell-dependent manner after secondary challenge in vivo with a conventional protein antigen such as hemocyanin. Further demonstration of their T cell deficiency was the failure of CB-17 scid spleen cells to proliferate and produce IL 2 in response to the T cell mitogen, concanavalin A. Upon infection with Listeria monocytogenes, CB-17 scid mice developed chronically high loads of bacteria, whereas CB-17 control mice eliminated all viable bacteria and became resistant to secondary infection. However, Listeria-infected CB-17 scid mice did show, in parallel with the CB-17 controls, an unexpected and striking increase of Ia-positive macrophages. These data indicate that induction of Ia expression in macrophages can occur via a mechanism that is independent of mature T cells.  相似文献   

19.
Leishmania donovani, a protozoan parasite, inflicts a fatal disease, visceral leishmaniasis. The suppression of antileishmanial T cell responses that characterizes the disease was proposed to be due to deficiency of a T cell growth factor, IL-2. We demonstrate that during the first week after L. donovani infection, IL-2 induces IL-10 that suppresses the host-protective functions of T cells 14 days after infection. The observed suppression is concurrent with increased CD4+ glucocorticoid-induced TNF receptor+ T cells and Foxp3 expression in BALB/c mice, implicating IL-2-dependent regulatory T cell control of antileishmanial immune responses. Indeed, IL-2 and IL-10 neutralization at different time points after the infection demonstrates their distinct roles at the priming and effector phases, respectively, and establishes kinetic modulation of ongoing immune responses as a principle of a rational, phase-specific immunotherapy.  相似文献   

20.
Murine gammaherpesvirus 68 (gamma HV-68; also referred to as MHV-68) is a gammaherpesvirus which infects murid rodents. Previous studies showed that CD8 T cells are important for controlling gamma HV-68 replication during the first 2 weeks of infection and suggested a role for B cells in latent or persistent gamma HV-68 infection. To further define the importance of B cells and CD8 T cells during acute and chronic gamma HV-68 infection, we examined splenic infection in mice with null mutations in the transmembrane domain of the mu-heavy-chain constant region (MuMT; B-cell and antibody deficient) or in the beta2-microglobulin gene (beta2 -/-; CD8 deficient). Immunocompetent mice infected intraperitoneally with gamma HV-68 demonstrated peak splenic titers 9 to 10 days postinfection, cleared infectious virus 15 to 20 days postinfection, and harbored low levels of latent virus at 6 weeks postinfection. Beta2-/- mice showed peak splenic gamma HV-68 titers similar to those of normal mice but were unable to clear infectious virus completely from the spleen, demonstrating persistent infectious virus 6 weeks postinfection. These data indicate that CD8 T cells are important for clearing infectious gamma HV-68 from the spleen. Infected MuMT mice did not demonstrate detectable infectious gamma HV-68 in the spleen at any time after infection, indicating that mature B lymphocytes are necessary for acute splenic infection by gamma HV-68. Despite the lack of measurable acute infection, MuMT spleen cells harbored latent virus 6 weeks postinfection at a level about 100-fold higher than that in normal mice. These data demonstrate establishment of latency by a herpesvirus in an organ in the absence of acute viral replication in that organ. In addition, they demonstrate that gamma HV-68 can establish latency in a cell type other than mature B lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号