首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was carried out on the linkage relationship between the Frl locus carrying resistance to Fusarium oxysporum f.sp. radicis-lycopersici and the Tm-2 locus carrying resistance to several races of tobacco mosaic virus in the tomato inbred line IRB-301-31. The inbred line Motelle (Frl+/Frl+, Tm-2+/Tm-2+) was crossed with the inbred line IRB-301-31 (Frl/Frl, Tm-2/Tm-l). The resulting 222 F2 plants were selfed, and from each F3 family groups of 15–60 seedlings were tested for resistance to either F. oxysporum f.sp. radicis-lycopersici or tobacco mosaic virus race 0. Segregation data indicated a very tight linkage between Frl and Tm-2, equal to 5.1 ± 1.07 map units.  相似文献   

2.
Leaf rust and stripe rust are important foliar diseases of wheat worldwide. Leaf rust and stripe rust resistant introgression lines were developed by induced homoeologous chromosome pairing between wheat chromosome 5D and 5Mg of Aegilops geniculata (UgMg). Characterization of rust resistant BC2F5 and BC3F6 homozygous progenies using genomic in situ hybridization with Aegilops comosa (M) DNA as probe identified three different types of introgressions; two cytologically visible and one invisible (termed cryptic alien introgression). All three types of introgression lines showed similar and complete resistance to the most prevalent pathotypes of leaf rust and stripe rust in Kansas (USA) and Punjab (India). Diagnostic polymorphisms between the alien segment and recipient parent were identified using physically mapped RFLP probes. Molecular mapping revealed that cryptic alien introgression conferring resistance to leaf rust and stripe rust comprised less than 5% of the 5DS arm and was designated T5DL·5DS-5MgS(0.95). Genetic mapping with an F2 population of Wichita × T5DL·5DS-5MgS(0.95) demonstrated the monogenic and dominant inheritance of resistance to both diseases. Two diagnostic RFLP markers, previously mapped on chromosome arm 5DS, co-segregated with the rust resistance in the F2 population. The unique map location of the resistant introgression on chromosome T5DL·5DS-5MgS(0.95) suggested that the leaf rust and stripe rust resistance genes were new and were designated Lr57 and Yr40. This is the first documentation of a successful transfer and characterization of cryptic alien introgression from Ae. geniculata conferring resistance to both leaf rust and stripe rust in wheat.  相似文献   

3.
Blackmold, caused by the fungus Alternaria alternata, is a major ripe fruit disease of processing tomatoes. Previously, we found blackmold resistance in a wild tomato (Lycopersicon cheesmanii) and quantitative trait loci (QTL) for resistance were mapped in an interspecific population. Five QTLs were selected for introgression from L. cheesmanii into cultivated tomato using marker-assisted selection (MAS). Restriction fragment length polymorphism and PCR-based markers flanking, and within, the chromosomal regions containing QTLs were used for MAS during backcross and selfing generations. BC1 plants heterozygous at the QTLs, and subsequent BC1S1 and BC1S2 lines possessing different homozygous combinations of alleles at the target QTLs, were identified using DNA markers. Field experiments were conducted in 1998 (with 80 marker-selected BC1S2 lines) and 1999 (with 151 marker-selected BC1S2 and BC1S3 lines) at three California locations. Blackmold resistance was assessed during both years, and horticultural traits were evaluated in 1999. The BC1S2 and BC1S3 lines containing L. cheesmanii alleles at the QTLs were associated with a large genetic variance for resistance to blackmold and moderate heritability, suggesting that significant genetic gain may be achieved by selection in this genetic material. L. cheesmanii alleles at three of the five introgressed QTLs showed a significant, positive effect on blackmold resistance. A QTL on chromosome 2 had the largest positive effect on blackmold resistance, alone and in combination with other QTLs, and was also associated with earliness, a positive horticultural trait. The other four QTLs were associated primarily with negative horticultural traits. Fine mapping QTLs using near isogenic lines could help determine if such trait associations are due to linkage drag or pleiotropy.  相似文献   

4.
The Tm-2 gene and its alleles conferring tomato mosaic virus resistance in tomato originate from Lycopersicon peruvianum, a wild relative of tomato. DNA fragments of several RAPD markers tightly linked with the Tm-2 locus in tomato were successfully cloned and sequenced. Subsequently, the 24-mer oligonucleotide primer pairs of the SCAR markers corresponding to the RAPD markers were designed based on the 5’-endmost sequences. A fragment of the same size as that of a SCAR marker was amplified in the ToMV-susceptible tomato line with no Tm-2, but the digests of the PCR fragments by AccI exhibited polymorphism in fragment length between the two lines. We chose three SCAR markers and three RAPD markers tightly linked with the Tm-2 locus, and examined whether the same-sized fragments corresponding to these markers were also present in three other lines carrying Tm-2a or one of the other Tm-2 alleles. The fragments corresponding to the three SCAR markers were present in all of the three lines, but the other markers (three RAPDs ) were absent in one or two lines, suggesting that the three SCAR markers are closer to Tm-2 than the other markers. Comparison of the nucleotide sequences of these fragments revealed that they are all homologous to the corresponding SCAR markers. Received: 8 November 1999 / Accepted: 15 November 1999  相似文献   

5.
In tomato, infections by tomato mosaic virus are controlled by durable Tm-22 resistance. In order to gain insight into the processes underlying disease resistance and its durability, we cloned and analysed the Tm-22 resistance gene and the susceptible allele, tm-2. The Tm-22 gene was isolated by transposon tagging using a screen in which plants with a destroyed Tm-22 gene survive. The Tm-22 locus consists of a single gene that encodes an 861 amino acid polypeptide, which belongs to the CC-NBS-LRR class of resistance proteins. The putative tm-2 allele was cloned from susceptible tomato lines via PCR with primers based on the Tm-22 sequence. Interestingly, the tm-2 gene has an open reading frame that is comparable to the Tm-22 allele. Between the tm-2 and the Tm-22 polypeptide 38 amino acid differences are present of which 26 are located in the second half of the LRR-domain. Susceptible tomato plants, which were transformed with the Tm-22 gene, displayed resistance against ToMV infection. In addition, virus specificity, displayed by the Tm-22 resistance was conserved in these transgenic lines. To explain the durability of this resistance, it is proposed that the Tm-22-encoded resistance is aimed at the Achilles' heel of the virus.  相似文献   

6.
Summary Genes introduced into cultivated plants by backcross breeding programs are flanked by introgressed segments of DNA derived from the donor parent. This phenomenon is known as linkage drag and is frequently thought to affect traits other than the one originally targeted. The Tm-2 gene of Lycopersicon peruvianum, which confers resistance to tobacco mosaic virus, was introduced into several different tomato cultivars (L. esculentum) by repeated backcrossing. We have measured the sizes of the introgressed segments flanking the Tm-2 locus in several of these cultivars using a high density map of restriction fragment length polymorphic (RFLP) markers. The smallest introgressed segment is estimated to be 4 cM in length, while the longest is over 51 cM in length and contains the entire short arm of chromosome 9. Additionally, RFLP analysis was performed on remnant seed from different intermediate generations corresponding to two different backcross breeding programs for TMV resistance. The results reveal that plants containing desirable recombination near the resistance gene were rarely selected during backcrossing and, as a result, the backcross breeding method was largely ineffective in reducing the size of linked DNA around the resistance gene. We propose that, by monitoring recombination around genes of interest with linked RFLP markers, one can quickly and efficiently reduce the amount of linkage drag associated with introgression. Using such a procedure, it is estimated that an introgressed segment can be obtained in two generations that is as small as that which would otherwise require 100 backcross generations without RFLP selection.  相似文献   

7.
Tm-2 and Tm-2a are genes conferring resistance to tomato mosaic virus in Lycopersicon esculentum. They are allelic and originated from different lines of L. peruvianum, a wild relative of tomato. In this study, random amplified polymorphic DNA (RAPD) markers linked to these genes were screened in nearly isogenic lines (NILs). To detect RAPDs differentiating NILs, 220 different 10-base oligonucleotide primers were examined by the polymerase chain reaction (PCR), and 43 of them generated 53 consistent polymorphic fragments among the NILs. Out of these 53 fragments, 13 were arbitrarily chosen and examined in respect of whether they were linked to the netted virescent (nv) gene, since nv is tightly linked to the Tm-2 locus and its phenotype is more easily distinguishable. As a result, all 13 markers were shown to be linked to nv, and hence to the Tm-2 locus. Among them, two fragments specific to the NIL carrying Tm-2 three specific to the NIL carrying Tm-2a, and four specific to both of these NILs were closely linked to nv.  相似文献   

8.
Our previous studies have hypothesised that a complementary epistasis between a QTL located on chromosome 12 and a QTL located on chromosome 7 was one of the major genetic factors controlling partial resistance to Rice yellow mottle virus (RYMV). We report research undertaken to verify this hypothesis and to introgress the resistant allele of these two QTLs from an upland resistant japonica variety, Azucena, into a lowland susceptible indica variety IR64. Three cycles of molecular marker-assisted back cross breeding were performed using RFLP and microsatellite markers. Resistance to RYMV was evaluated in F2 and F3 offspring of the BC1 and BC2 generations. Marker-assisted introgression (MAI) was very efficient: in the selected BC3 progeny the proportion of the recipient genome was close to 95% for the ten non-carrier chromosomes, and the length of the donor chromosome segment surrounding the two QTLs was less than 20 cM. The relevancy of the complementary epistasis genetic model proposed previously was confirmed experimentally: in BC1 and BC2 generations only F3 lines having the allele of the resistant parent on QTL12 and QTL7 show partial resistance to RYMV. Comparison of our experimental process of MAI with the recommendations of analytic and simulation studies pointed out the methodological flexibility of MAI. Our results also confirmed the widely admitted, but rarely verified, assumption that QTL-alleles detected in segregating populations could be treated as units of Mendelian inheritance and that the incorporation of these alleles into elite lines would result in an enhanced performance. The next step will be the design of tools for the routine use of molecular markers in breeding for partial resistance to RYMV and the development of material for the analysis of resistance mechanisms and the structure of a virus resistance gene in rice. Received: 11 August 2000 / Accepted: 20 March 2001  相似文献   

9.
Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, is one of the important wheat diseases, worldwide. Two PM resistance genes, designated as PmTb7A.1 and PmTb7A.2, were identified in T. boeoticum acc. pau5088 and mapped on chromosome 7AL approximately 48cM apart. Two resistance gene analogue (RGA)-STS markers Ta7AL-4556232 and 7AL-4426363 were identified to be linked to the PmTb7A.1 and PmTb7A.2, at a distance of 0.6cM and 6.0cM, respectively. In the present study, following marker assisted selection (MAS), the two genes were transferred to T. aestivum using T. durum as bridging species. As many as 12,317 florets of F1 of the cross T. durum /T. boeoticum were pollinated with T. aestivum lines PBW343-IL and PBW621 to produce 61 and 65 seeds, respectively, of three-way F1. The resulting F1s of the cross T. durum/T. boeoticum//T. aestivum were screened with marker flanking both the PM resistance genes PmTb7A.1 and PmTb7A.2 (foreground selection) and the selected plants were backcrossed to generate BC1F1. Marker assisted selection was carried both in BC1F1 and the BC2F1 generations. Introgression of alien chromatin in BC2F1 plants varied from 15.4 - 62.9 percent. Out of more than 110 BC2F1 plants showing introgression for markers linked to the two PM resistance genes, 40 agronomically desirable plants were selected for background selection for the carrier chromosome to identify the plants with minimum of the alien introgression. Cytological analysis showed that most plants have chromosome number ranging from 40-42. The BC2F2 plants homozygous for the two genes have been identified. These will be crossed to generate lines combining both the PM resistance genes but with minimal of the alien introgression. The PM resistance gene PmTb7A.1 maps in a region very close to Sr22, a stem rust resistance gene effective against the race Ug99. Analysis of selected plants with markers linked to Sr22 showed introgression of Sr22 from T. boeoticum in several BC2F1 plants. Thus, in addition to PM resistance, these progeny might also carry resistance to stem rust race Ug99.  相似文献   

10.
Cucumber mosaic virus (CMV) is one of the most destructive viruses in the Solanaceae family. Simple inheritance of CMV resistance in peppers has not previously been documented; all previous studies have reported that resistance to this virus is mediated by several partially dominant and recessive genes. In this study, we showed that the Capsicum annuum cultivar ‘Bukang’ contains a single dominant resistance gene against CMVKorean and CMVFNY strains. We named this resistance gene Cmr1 (Cucumber mosaic resistance 1). Analysis of the cellular localization of CMV using a CMV green fluorescent protein construct showed that in ‘Bukang,’ systemic movement of the virus from the epidermal cell layer to mesophyll cells is inhibited. Genetic mapping and FISH analysis revealed that the Cmr1 gene is located at the centromeric region of LG2, a position syntenic to the ToMV resistance locus (Tm-1) in tomatoes. Three SNP markers were developed by comparative genetic mapping: one intron-based marker using a pepper homolog of Tm-1, and two SNP markers using tomato and pepper BAC sequences mapped near Cmr1. We expect that the SNP markers developed in this study will be useful for developing CMV-resistant cultivars and for fine mapping the Cmr1 gene.  相似文献   

11.
Rice stripe disease, caused by rice stripe virus (RSV), is one of the most serious diseases in temperate rice-growing areas. In the present study, we performed quantitative trait locus (QTL) analysis for RSV resistance using 98 backcross inbred lines derived from the cross between the highly resistant variety, Kasalath, and the highly susceptible variety, Nipponbare. Under artificial inoculation in the greenhouse, two QTLs for RSV resistance, designated qSTV7 and qSTV11 KAS , were detected on chromosomes 7 and 11 respectively, whereas only one QTL was detected in the same location of chromosome 11 under natural inoculation in the field. The stability of qSTV11 KAS was validated using 39 established chromosome segment substitution lines. Fine mapping of qSTV11 KAS was carried out using 372 BC3F2:3 recombinants and 399 BC3F3:4 lines selected from 7,018 BC3F2 plants of the cross SL-234/Koshihikari. The qSTV11 KAS was localized to a 39.2 kb region containing seven annotated genes. The most likely candidate gene, LOC_Os11g30910, is predicted to encode a sulfotransferase domain-containing protein. The predicted protein encoded by the Kasalath allele differs from Nipponbare by a single amino acid substitution and the deletion of two amino acids within the sulfotransferase domain. Marker-resistance association analysis revealed that the markers L104-155 bp and R48-194 bp were highly correlated with RSV resistance in the 148 landrace varieties. These results provide a basis for the cloning of qSTV11 KAS , and the markers may be used for molecular breeding of RSV resistant rice varieties.  相似文献   

12.
Summary Fifty-two introgression lines (BC2F8) from crosses between two Oryza sativa parents and five accessions of O. officinalis were analyzed for the introgression of O. officinalis chromosome segments. DNA from the parents and introgression lines was analyzed with 177 RFLP markers located at approximately 10-cM intervals over the rice chromosomes. Most probe/enzyme combinations detected RFLPs between the parents. Of the 174 informative markers, 28 identified putative O. officinalis introgressed chromosome segments in 1 or more of the introgression lines. Introgressed segments were found on 11 of the 12 rice chromosomes. In most cases of introgression, O. sativa RFLP alleles were replaced by O. officinalis alleles. Introgressed segments were very small in size and similar in plants derived from early and later generations. Some nonconventional recombination mechanism may be involved in the transfer of such small chromosomal segments from O. officinalis chromosomes to those of O. sativa. Some of the introgressed segments show association with genes for brown planthopper (BPH) resistance in some introgressed lines, but not in others. Thus, none of the RFLP markers could be unambiguously associated with BPH resistance.  相似文献   

13.
Summary We studied rDNA restriction fragment length polymorphism between two tomato lines used for F1 hybrid seed production: line A, containing the Tm-1 gene responsible for tobacco mosaic virus tolerance introgressed from the wild species Lycopersicon hirsutum, and line B, a tobacco mosaic virus sensitive line. Hybridization patterns led to distinct rDNA maps with two size classes, 10.4 and 10.7 kb, in line A and a single, 8.9-kb class in line B. Size differences were located in the intergenie sequence (IGS). A highly specific 54-bp TaqI fragment was cloned from the line A IGS and used in dot blot experiments to probe total DNA from line A, line B, and their F1 hybrid. It proved capable of discriminating B from A and the hybrid. This probe could thus serve to screen inbreds in commercial seed lots where line A is used as male. This fragment showed 80–90% sequence homology with the 53-bp subrepeats previously characterized in a region of the tomato IGS close to the 25S rRNA gene. Preliminary comparison of rDNA in line A and several wild related species indicated that the L. hirsutum H2 genotype was the closest to line A. rDNA variations between line A and this wild genotype could be explained by recombination during the introgression process involving numerous backcrosses or by an important intraspecific polymorphism. Our results strongly suggest that Tm-1 and the rDNA were introgressed together into tomato from L. hirsutum through linkage drag.  相似文献   

14.
Lycopersicon peruvianum LA2172 is completely resistant to Oidium neolycopersici, the causal agent of tomato powdery mildew. Despite the large genetic distance between the cultivated tomato and L. peruvianum, fertile F1 hybrids of L. esculentum cv. Moneymaker × L. peruvianum LA2172 were produced, and a pseudo-F2 population was generated by mating F1 half-sibs. The disease tests on the pseudo-F2 population and two BC1 families showed that the resistance in LA2172 is governed by one dominant gene, designated as Ol-4. In the pseudo-F2 population, distorted segregation was observed, and multi-allelic, single-locus markers were used to display different marker-allele configurations per locus. Parameters for both distortion and linkage between genetic loci were determined by maximum likelihood estimation, and the necessity of using multi-allelic, single-locus markers was illustrated. Finally, a genetic linkage map of chromosome 6 around the Ol-4 locus was constructed by using the pseudo-F2 population.  相似文献   

15.
High sucrose concentration in fruit of Lycopersicon chmielewskii is governed by the recessive sucrose accumulator gene (sucr) that is situated in the pericentromeric region of chromosome 3. The sucr gene was introgressed into the genetic background of the hexose-accumulating cultivated tomato (L. esculentum cv Hunt 100) by marker-assisted selection using tightly linked RFLP markers and a tomato acid invertase cDNA as probes for sucr. RFLP mapping indicated that the segment containing sucr comprised over 43.2 cM in the BC1F2 generation, representing over one-third of the total length of chromosome 3. By selecting for crossovers between sucr and the flanking visual marker r (yellow fruit flesh) and RFLP marker TG288, we were able to reduce the size of the sucr introgression fragment to 0.8–7.1 cM by the BC5 generation. Smaller recombinant fragments were not obtained despite screening a large BC6F2 population. The smallest sucr introgression reduced recombination between the flanking visual markers sy (sunny) and bls (baby lea syndrome) by 38%. To facilitate future introgression and recombination experiments, a PCR-based test for the sucr gene was developed using primers specific to the tomato invertase gene. This assay takes advantage of a small deletion that maps to the second intron of the L. chmielewskii nvertase gene. The assay detected significant allelic variation both within and between hexose- and sucrose-accumulating Lycopersicon spp.  相似文献   

16.
Tomato cultivars containing the Tm-22 resistance gene have been widely known to resist tobacco mosaic virus (TMV) and tomato mosaic virus. Tomato brown rugose fruit virus (ToBRFV), a new emerging tobamovirus, can infect tomato plants carrying the Tm-22 gene. However, the virulence determinant of ToBRFV that overcomes the resistance conferred by the Tm-22 gene remains unclear. In this study, we substituted the movement protein (MP) encoding sequences between ToBRFV and TMV infectious clones and conducted infectivity assays. The results showed that MP was the virulence determinant for ToBRFV to infect Tm-22 transgenic Nicotiana benthamiana plants and Tm-22-carrying tomato plants. A TMV MP chimera with amino acid residues 60–186 of ToBRFV MP failed to induce hypersensitive cell death in the leaves of Tm-22 transgenic N. benthamiana plants. Chimeric TMV containing residues 60–186 of ToBRFV MP could, but chimeric ToBRFV containing 61–187 residues of TMV MP failed to infect Tm-22 transgenic N. benthamiana plants, indicating that 60–186 residues of MP were important for ToBRFV to overcome Tm-22 gene-mediated resistance. Further analysis showed that six amino acid residues, H67, N125, K129, A134, I147, and I168 of ToBRFV MP, were critical in overcoming Tm-22-mediated resistance in transgenic N. benthamiana plants and tomato plants. These results increase our understanding of the mechanism by which ToBRFV overcomes Tm-22-mediated resistance.  相似文献   

17.
The tomato Tm-22 gene was considered to be one of the most durable resistance genes in agriculture, protecting against viruses of the Tobamovirus genus, such as tomato mosaic virus (ToMV) and tobacco mosaic virus (TMV). However, an emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), has overcome Tm-22, damaging tomato production worldwide. Tm-22 encodes a nucleotide-binding leucine-rich repeat (NLR) class immune receptor that recognizes its effector, the tobamovirus movement protein (MP). Previously, we found that ToBRFV MP (MPToBRFV) enabled the virus to overcome Tm-22-mediated resistance. Yet, it was unknown how Tm-22 remained durable against other tobamoviruses, such as TMV and ToMV, for over 60 years. Here, we show that a conserved cysteine (C68) in the MP of TMV (MPTMV) plays a dual role in Tm-22 activation and viral movement. Substitution of MPToBRFV amino acid H67 with the corresponding amino acid in MPTMV (C68) activated Tm-22-mediated resistance. However, replacement of C68 in TMV and ToMV disabled the infectivity of both viruses. Phylogenetic and structural prediction analysis revealed that C68 is conserved among all Solanaceae-infecting tobamoviruses except ToBRFV and localizes to a predicted jelly-roll fold common to various MPs. Cell-to-cell and subcellular movement analysis showed that C68 is required for the movement of TMV by regulating the MP interaction with the endoplasmic reticulum and targeting it to plasmodesmata. The dual role of C68 in viral movement and Tm-22 immune activation could explain how TMV was unable to overcome this resistance for such a long period.  相似文献   

18.
The whitefly-transmitted tomato yellow-leaf curl gemini-virus (TYLCV) is a major pathogen of tomatoes. The wild tomato species Lycopersicon chilense, which is resistant to the virus, was crossed to the cultivated tomato, L. esculentum. The backcross-1 selfed (BC1S1) generation was inoculated and a symptomless plant was selected. This plant was analyzed using 61 molecular markers, which span the tomato genome, to determine which L. chilense chromosome segments were introgressed. A BC2S1 population was cage-inoculated with viroliferous whiteflies (Bemisia tabaci), the natural insect vector of the virus, and subjected to RFLP analysis. Markers on chromosomes 3 and 6 were significantly associated with the level of tolerance; the association of chromosome-6 markers was further substantiated in two additional BC2S1 populations. A tolerant BC2S1 plant which was homozygous for L. chilense introgressions in chromosomes 3, 6 and 7 was crossed to generate a BC3S1 population which was planted in an infested field. A TYLCV-tolerance gene with partial dominance, TY-1, was mapped to chromosome 6; two modifier genes were mapped to chromosomes 3 and 7. Field and whitefly-mediated cage inoculations of nearly-isogenic lines in BC3S3 supported our conclusion that TY-1 is the major TYLCV-tolerance locus.  相似文献   

19.
A new CMS system designated as ‘msH1’ has been reported in bread wheat using the cytoplasm of H. chilense. While testing this system in different wheat backgrounds, a highly fertile line with chromosome number 42 plus an extra acrocentric chromosome was obtained. The extra chromosome did not pair with any wheat chromosome at meiosis, and progeny from this line which lack the acrocentric chromosome showed pollen abortion and male sterility. In order to establish the origin of this chromosome, FISH using H. chilense genomic DNA as probe was used and showed that it had originated from H. chilense chromosome(s). The novel chromosome did not possess sequences similar to wheat rDNA; however, the probe pSc119.2 from S. cereale containing the 120 bp family was found to occur at the end of its long arm. Data obtained from FISH and EST molecular markers confirm that the long arm of the acrocentric chromosome is indeed, the short arm of chromosome 1Hch from H. chilense. We suggest that the novel chromosome originated from a deletion of the distal part of the long arm of chromosome 1Hch. Neither the 1HchS short arm, nor the whole chromosome 1Hch restores pollen fertility of the alloplasmic wheat. Therefore, the restorer gene on the acrocentric chromosome must be located on the retained segment from the hypothetical 1HchL, while some pollen fertility inhibitor could be present on the deleted 1HchL distal segment. Disomic addition of the acrocentric chromosome was obtained and this line resulted fully stable and fertile.  相似文献   

20.
 Segregation of the Lycopersicon peruvianum genome was followed through three generations of backcrossing to the cultivated tomato L. esculentum cv ‘E6203’ using molecular markers. Thirteen BC1 plants were genotyped with 113 markers, 67 BC2 plants with 84 markers, and finally 241 BC3 plants were genotyped with 177 markers covering the entire genome and a BC3 map constructed. Several segments of the genome, including parts of chromosomes 3, 4, 6, and 10, quickly became fixed for esculentum alleles, possibly due to sterility problems encountered in the BC1. Observed overall heterozygosity and chromosome segment lengths at each generation were very near the expected theoretical values. Markers located near the top telomeric region of chromosome 9 showed segregation highly skewed towards the wild allele through all generations, suggesting the presence of a gamete promoter gene. One markers, TG9, mapped to a new position on chromosome 9, implying an intrachromosomal translocation event. Despite the great genetic distance between the two parents, overall recombination was only 25% less than that observed in a previous tomato cross, indicating that L. peruvianum genes may be more readily introgressed into cultivated germplasm than originally believed. Received: 9 April 1997 / Accepted : 20 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号