首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An adaptive response is a response to a stress such as radiation exposure that results in a lower than expected biological response. We describe an adaptive response to X radiation in mouse prostate using the pKZ1 chromosomal inversion assay. pKZ1 mice were treated with a priming dose of 0.001, 0.01, 1 or 10 mGy followed 4 h later by a 1000-mGy challenge dose. All priming doses caused a similar reduction in inversions compared to the 1000-mGy group, supporting the hypothesis that the adaptive response is the result of an on/off mechanism. The adaptive response was induced by a priming dose of 0.001 mGy, which is three orders of magnitude lower than has been reported previously. The adaptive responses completely protected against the inversions that would have been induced by a single 1000-mGy dose as well as against a proportion of spontaneous background inversions. The distribution of inversions across prostate gland cross sections after priming plus challenge irradiation suggested that adaptive responses were predominantly due to reduced low-dose radiation-induced inversions rather than to reduced high-dose radiation-induced inversions. This study used radiation doses relevant to human exposure.  相似文献   

2.
Somatic intrachromosomal recombination can result in inversions and deletions in DNA, which are important mutations in cancer. The pKZ1 chromosomal inversion assay is a sensitive assay for studying the effects of DNA damaging agents using chromosomal inversion as a mutation end-point. We have previously demonstrated that the chromosomal inversion response in pKZ1 spleen after single low doses of X-radiation exposure does not follow the linear no-threshold dose–response model. Here, we optimised a chromosomal inversion screening method to study the effect of low dose X-radiation exposure in pKZ1 prostatic tissue. In the present study, a significant induction in inversions was observed after ultra-low doses of 0.005–0.01 mGy or after a high dose of 1000 mGy, whereas a reduction in inversions to below the sham-treated frequency was observed between 1 and 10 mGy exposure. This is the first report of a reduction to below endogenous frequency for any mutation end-point in prostate. In addition, the doses of radiation studied were at least three orders of magnitude lower than have been reported in other mutation assays in prostate in vivo or in vitro. In sham-treated pKZ1 controls and in pKZ1 mice treated with low doses of 1–10 mGy the number of inversions/gland cross-section rarely exceeded three. Up to 4 and 7 inversions were observed in individual prostatic gland cross-sections after doses ≤0.02 mGy and after 1000 mGy, respectively. The number of inversions identified in individual cross-sections of prostatic glands of untreated mice and all treated mice other than the 1000 mGy treatment group followed a Poisson distribution. The dose–response curves and fold changes observed after all radiation doses studied were similar in spleen and prostate. These results suggest that the pKZ1 assay is measuring a fundamental response to DNA damage after low dose X-radiation exposure which is independent of tissue type.  相似文献   

3.
Liu G  Gong P  Zhao H  Wang Z  Gong S  Cai L 《Radiation research》2006,165(4):379-389
Hormetic and adaptive responses induced by low-level radiation in hematopoietic and immune systems have been observed, as shown by stimulatory effects on cell growth and resistance to subsequent radiation-induced cytogenetic damage. However, in terms of cell death by apoptosis, the effects of low-level radiation are controversial: Some studies showed decreased apoptosis in response to low-level radiation while others showed increased apoptosis. This controversy may be related to the radiation doses or dose rates and also, more importantly, to the cell types. Testes are one of the most radiosensitive organs. The loss of male germ cells after exposure to ionizing radiation has been attributed to apoptosis. In the present study, the effects of low-level radiation at doses up to 200 mGy on mouse male germ cells in terms of apoptosis and the expression of apoptosis-related proteins were examined at different times after whole-body exposure of mice to low-level radiation. In addition, the effect of pre-exposure to low-level radiation on subsequent cell death induced by high doses of radiation was examined to explore the possibility of low-level radiation-induced adaptive response. The results showed that low-level radiation in the dose range of 25-200 mGy induced significant increases in apoptosis in both spermatogonia and spermatocytes, with the maximal effect at 75 mGy. The increased apoptosis is most likely associated with Trp53 protein expression. Furthermore, 75 mGy low-level radiation given pre-irradiation led to an adaptive response of seminiferous germ cells to subsequent high-level radiation-induced apoptosis. These results suggest that low-level radiation induces increased apoptosis in male germ cells but also induces a significant adaptive response that decreases cell death after a subsequent high-dose irradiation.  相似文献   

4.
Effect of low-dose radiation on repair of DNA and chromosome damage   总被引:1,自引:0,他引:1  
In this report results of studies on the effect of different doses of low LET (linear energy transfer) radiations on the unscheduled DNA synthesis (UDS) and DNA polymerase activity as well as the induction of adaptive response in bone marrow cells (BMC) by low dose radiation were presented. It was found that whole-body irradiation (WBI) with X-ray doses above 0.5 Gy caused a dose-dependent depression of both UD5 and DNA polymerase activity, while low dose radiation below 250 mGy could stimulate the DNA repair synthesis and the enzyme activity. WBI of mice with low doses of X-rays in the range of 2-100 mGy at a dose rate of 57.3 mGy per minute induced an adaptive response in the BMC expressed as a reduction of chromosome aberrations following a second exposure to a larger dose (0.65 mGy). It was demonstrated that the magnitude of the adaptive response seemed to be inversely related to the induction dose. The possibility of induction of adaptive response in GO phase of the cell cycle and the possibility of a second induction of the adaptive response were discussed.  相似文献   

5.
The yield of chromosome aberrations induced by gamma-radiation of 60Co in human blood lymphocytes in vitro at low doses (30 divided by 600 mGy) and low dose rates (0.70, 5.05, 59.2 mGy/min) was investigated. It was found that the observed level of chromosomal aberrations induced by gamma-irradiation was unaffected by the value of the dose rate when using constant dose rate and obtaining different doses by altering the exposure time. However, a relatively enhanced level of chromatid aberrations was found at 5.05 and 59.2 mGy/min dose rates in the dose range less than 250 mGy. We have found that the observed level of the sum of chromosomal aberrations induced by gamma-irradiation at doses less than 250 mGy and a dose rate of 59.2 mGy/min was essentially larger compared with the level extrapolated from high doses (above 300 mGy) using a linear-quadratic dose curve. This complied with our previous finding in 1976, 1977 when the enhanced level of dicentrics was only found at a high dose rate approximately 500 mGy/min. Such a non-linear cytogenetic effect does not manifest itself statistically significantly at dose rates of 0.70 and 5.05 mGy/min for the sum of chromosomal aberrations and does not manifest itself at all for dicentrics at all the examined dose rates.  相似文献   

6.
Trp53 heterozygous mice are radiation-sensitive and cancer-prone. Groups of 7-8-week-old female Trp53 heterozygous mice were exposed to 4 Gy of 60Co gamma radiation at high (0.5 Gy/min) or low (0.5 mGy/min) dose rate. Other groups received 10 or 100 mGy at low dose rate 24 h prior to the 4-Gy dose. Tumor frequency and latency were measured over the animals' life span. Exposure to 10 mGy prior to 4 Gy resulted in a small (approximately 5%) but significant life-span regain and increased latency (approximately 9%) for all malignant tumors taken together, but 100 mGy further reduced life span slightly (approximately 7%). Latency responses were tumor type-specific. The prior 10-mGy exposure resulted in a small (approximately 7%) regain in latency for lymphomas but no change in latency for spinal osteosarcomas. Increasing the adapting dose to 100 mGy eliminated the increase in lymphoma latency and further reduced life span (approximately 8%). A 10-mGy dose prior to 4 Gy at low dose rate had no effects. Adapting exposures had no significant effect on tumor frequency. We conclude that a single low dose induced a small protective response in vivo in Trp53+/- mice, reducing the carcinogenic effects of a subsequent large, high-dose-rate exposure by increasing tumor latency. The upper dose threshold at which low-dose protective effects gave way to detrimental effects was tumor type-specific, as found previously for spontaneous tumors in these same cancer-prone mice (Radiat. Res. 159, 320-327, 2003). However, the upper dose thresholds appear to be lower (below 100 mGy) for radiation-induced tumors than for the same tumors appearing spontaneously.  相似文献   

7.
The dose response for adaption to radiation at low doses was compared in normal human fibroblasts (AG1522) exposed to either (60)Co gamma rays or (3)H beta particles. Cells were grown in culture to confluence and exposed at either 37 degrees C or 0 degrees C to (3)H beta-particle or (60)Co gamma-ray adapting doses ranging from 0.1 mGy to 500 mGy. These cells, and unexposed control cells, were allowed to adapt during a fixed 3-h, 37 degrees C incubation prior to a 4-Gy challenge dose of (60)Co gamma rays. Adaption was assessed by measuring micronucleus frequency in cytokinesis-blocked, binucleate cells. No adaption was detected in cells exposed to (60)Co gamma radiation at 37 degrees C after a dose of 0.1 mGy given at a low dose rate or to 500 mGy given at a high dose rate. However, low-dose-rate exposure (1-3 mGy/min) to any dose between 1 and 500 mGy from either radiation, delivered at either temperature, caused cells to adapt and reduced the micronucleus frequency that resulted from the subsequent 4-Gy exposure. Within this dose range, the magnitude of the reduction was the same, regardless of the dose or radiation type. These results demonstrate that doses as low as (on average) about one track per cell (1 mGy) produce the same maximum adaptive response as do doses that deposit many tracks per cell, and that the two radiations were not different in this regard. Exposure at a temperature where metabolic processes, including DNA repair, were inactive (0 degrees C) did not alter the result, indicating that the adaptive response is not sensitive to changes in the accumulation of DNA damage within this range. The results also show that the RBE for low doses of tritium beta-particle radiation is 1, using adaption as the end point.  相似文献   

8.
In previous studies we have shown that low doses of radiation from incorporated tritiated thymidine can make human lymphocytes less susceptible to the genetic damage manifested as chromatid breakage induced by a subsequent high dose of X rays. We have also shown that this adaptive response to ionizing radiation can be induced by very low doses of X rays (0.01 Gy; i.e., 1 rad) delivered during S phase of the cell cycle. To see if a low dose of X rays could induce this response in cells at other phases of the cell cycle, human lymphocytes were irradiated with 0.01 or 0.05 Gy before stimulation by phytohemagglutinin (G0) or with 0.01 Gy at various times after stimulation (G1), followed by 1.5 Gy (150 rad) at G2 phase. Although G0 lymphocytes failed to exhibit an adaptive response, G1 cells irradiated as early as 4 h after stimulation did show the response. Experiments were also carried out to determine how long the adaptive response induced by 0.01 Gy could persist. A 0.01-Gy dose was delivered to lymphocytes in the first S phase, followed by 1.5 Gy in the same or subsequent cell cycles. Lymphocytes receiving a 1.5-Gy dose at 40, 48, or 66 h after stimulation exhibited an adaptive response, whereas those receiving a 1.5-Gy dose at 90 or 114 h did not. Duplicate cultures containing bromodeoxyuridine showed that at 40 h all the lymphocytes were in their first cell cycle after stimulation, at 48 h half of the lymphocytes were in their first cell cycle and half in their second, and at 66 h 80% of the lymphocytes were in their third cell cycle. Thus the adaptive response persists for at least three cell cycles after it is induced by 0.01 Gy of X rays. In other experiments, the time necessary for maximal expression of the adaptive response was determined by delivering 0.01 Gy at hourly intervals 1-6 h before the 1.5-Gy dose. While a 4-h interval was enough for expression of the adaptive response, shorter intervals were not.  相似文献   

9.
The influence of low-dose-rate chronic radiation exposure and adaptive responses on non-cancer diseases is largely unknown. We examined the effect of low-dose/low-dose-rate fractionated or single exposures on spontaneous chronic ulcerative dermatitis in Trp53 normal or heterozygous female C57BL/6 mice. From 6 weeks of age, mice were exposed 5 days/week to single daily doses (0.33 mGy, 0.7 mGy/h) totaling 48, 97 or 146 mGy over 30, 60 or 90 weeks, and other Trp53+/- mice were exposed to a single dose of 10 mGy (0.5 mGy/min) at 20 weeks of age. The 90-week exposure produced an adaptive response, decreasing both disease frequency and severity in Trp53+/+ mice and extending the life span of older animals euthanized due to severe disease. The 30- or 60-week exposures had no significant protective or detrimental effect. In contrast, the chronic, fractionated exposure for 30 or 60 weeks significantly increased the frequency and severity of the disease in older Trp53+/- mice, significantly decreasing the life span of the animals required to be euthanized for disease. Similarly, the single 10-mGy exposure also increased disease frequency in older animals. However, the chronic, fractionated exposure for 90 weeks prevented these detrimental effects, with disease frequency and severity not different from unexposed controls. We conclude that very low-dose fractionated exposures can induce a protective adaptive response in both Trp53 normal and heterozygous mice, but that a lower threshold level of exposure, similar in both cases, must first be passed. In mice with reduced Trp53 functionality, doses below the threshold can produce detrimental effects.  相似文献   

10.
The induction of thymic lymphomas by whole-body X irradiation with four doses of 1.8 Gy (total dose: 7.2 Gy) in C57BL/6 mice was suppressed from a high frequency (90%) to 63% by preirradiation with 0.075 Gy X rays given 6 h before each 1.8-Gy irradiation. This level was further suppressed to 43% by continuous whole-body irradiation with 137Cs gamma rays at a low dose rate of 1.2 mGy/h for 450 days, starting 35 days before the challenging irradiation. Continuous irradiation at 1.2 mGy/h resulting in a total dose of 7.2 Gy over 258 days yielded no thymic lymphomas, indicating that this low-dose-rate radiation does not induce these tumors. Further continuous irradiation up to 450 days (total dose: 12.6 Gy) produced no tumors. Continuously irradiated mice showed no loss of hair and a greater body weight than unirradiated controls. Immune activities of the mice, as measured by the numbers of CD4+ T cells, CD40+ B cells, and antibody-producing cells in the spleen after immunization with sheep red blood cells, were significantly increased by continuous 1.2-mGy/h irradiation alone. These results indicate the presence of an adaptive response in tumor induction, the involvement of radiation-induced immune activation in tumor suppression, and a large dose and dose-rate effectiveness factor (DDREF) for tumor induction with extremely low-dose-rate radiation.  相似文献   

11.
Exposure to high doses of ionizing radiation unequivocally produces adverse health effects including malignancy. At low doses the situation is much less clear, because effects are generally too small to be estimated directly by epidemiology, and extrapolation of risk and establishment of international rules and standards rely on the linear no-threshold (LNT) concept. Claims that low doses are more damaging than would be expected from LNT have been made on the basis of in vitro studies of nontargeted bystander effects and genomic instability, but relevant investigations of primary cells and tissues are limited. Here we show that after low-dose low-LET in vivo radiation exposures in the 0-100-mGy range of murine bone marrow there is no evidence of a bystander effect, assessed by p53 pathway signaling, nor is there any evidence for longer-term chromosomal instability in the bone marrow at doses below 1000 mGy. The data are not consistent with speculations based on in vitro nontargeted effects that low-dose X radiation is more damaging than would be expected from linear extrapolation.  相似文献   

12.
Human lymphocytes exposed to low doses of X-rays become refractory to the subsequent induction of chromosomal damage by high doses of radiation (Shadley and Wolff, 1987). The current study was designed to test the effect of pretreatment of human T-lymphocytes with a low dose of X-rays on the induction of mutations at the hprt locus by a subsequent challenge dose. When cells were exposed to 1 cGy X-rays 24 h after phytohemagglutinin stimulation, the yield of mutations induced by a 300 cGy X-ray dose given 16 h later was reduced by approximately 70% from the control level of X-ray-induced mutations. This indicates that this previously described adaptive response to low dose X-rays also results in lymphocytes becoming refractory to the induction of gene mutations.  相似文献   

13.
To test whether bystander effects occur in vivo after low doses of radiation relevant to occupational and population exposure, we exposed mice to whole-body X-radiation doses (0.01 and 1 mGy) where only a proportion of cells would receive an electron track. We used a precise method to analyze the apoptosis frequency in situ in spleen tissue sections at 7 h and 1, 3 and 7 days after irradiation to determine whether an increase in apoptosis above that predicted by direct effects was observed. No significant changes in the apoptosis frequency at any time after low-dose irradiation were detected. Apoptosis was induced above endogenous levels by five- to sevenfold 7 h after 1000 mGy. Using these data, the expected increases in apoptosis 7 h after a dose of 1 mGy or 0.01 mGy were calculated based on the assumption that induction of apoptosis would decrease linearly with dose. The magnitude of potential bystander effects for apoptosis that could be detected above homeostatic levels after these low doses of radiation was determined. A substantial bystander effect for apoptosis (>50-fold above direct effects) would be required before such proposed effects would be identified using 10 animals/treatment group as studied here. These data demonstrate that amplification of apoptosis even due to a substantial bystander effect would fall within the homeostatic range.  相似文献   

14.
The dependence of the incidence of radiation-induced cancer on the dose rate of the radiation exposure is a question of considerable importance to the estimation of risk of cancer induction by low-dose-rate radiation. Currently a dose and dose-rate effectiveness factor (DDREF) is used to convert high-dose-rate risk estimates to low dose rates. In this study, the end point of neoplastic transformation in vitro has been used to explore this question. It has been shown previously that for low doses of low-LET radiation delivered at high dose rates, there is a suppression of neoplastic transformation frequency at doses less than around 100 mGy. In the present study, dose-response curves up to a total dose of 1000 mGy have been generated for photons from (125)I decay (approximately 30 keV) delivered at doses rates of 0.19, 0.47, 0.91 and 1.9 mGy/min. The results indicate that at dose rates of 1.9 and 0.91 mGy/min the slope of the induction curve is about 1.5 times less than that measured at high dose rate in previous studies with a similar quality of radiation (28 kVp mammographic energy X rays). In the dose region of 0 to 100 mGy, the data were equally well fitted by a threshold or linear no-threshold model. At dose rates of 0.19 and 0.47 mGy/min there was no induction of transformation even at doses up to 1000 mGy, and there was evidence for a possible suppressive effect. These results show that for this in vitro end point the DDREF is very dependent on dose rate and at very low doses and dose rates approaches infinity. The relative risks for the in vitro data compare well with those from epidemiological studies of breast cancer induction by low- and high-dose-rate radiation.  相似文献   

15.
The purpose of this study was to determine whether adaptation against neoplastic transformation could be induced by exposure to very low-dose-rate low-LET radiation. HeLa x skin fibroblast human hybrid cells were irradiated with approximately 30 kVp photons from an array of (125)I seeds. The initial dose rate was 4 mGy/day. Cell samples were taken at four intervals at various times over a period of 88 days and assayed for neoplastic transformation and the presence of reactive oxygen species (ROS). The dose rate at the end of this treatment period was 1.4 mGy/day. Transformation frequencies and ROS levels were compared to those of parallel unirradiated controls. At the end of 3 months and an accumulated dose of 216 mGy, cells treated with very low-dose-rate radiation were exposed to a high-dose-rate 3-Gy challenge dose of (137)Cs gamma rays, and the effects compared with the effect of 3 Gy on a parallel culture of previously unirradiated cells. Cells exposed to very low-dose-rate radiation exhibited a trend toward a reduction in neoplastic transformation frequency compared to the unirradiated controls. This reduction seemed to diminish with time, indicating that the dose rate, rather than accumulated dose, may be the more important factor in eliciting an adaptive response. This pattern was in general paralleled by a reduction of ROS present in the irradiated cultures compared to controls. The very low-dose-rate-treated cells were less sensitive to the high challenge dose than unirradiated controls, suggesting the induction of an adaptive response. Since there was a suggestion of a dose-rate threshold for induction suppression, a second experiment was run with a fresh batch of cells at an initial dose rate of 1 mGy/day. These cells were allowed to accumulate 40 mGy over 46 days (average dose rate=0.87 mGy/day), and there was no evidence for suppression of transformation frequency compared to parallel unirradiated controls. It is concluded that doses of less than 100 mGy delivered at very low dose rates in the range 1 to 4 mGy/day can induce an adaptive response against neoplastic transformation in vitro. When the dose rate drops below approximately 1 mGy/day, this suppression is apparently lost, suggesting a possible dose-rate-dependent threshold for this process.  相似文献   

16.
An adaptive response induced by long-term low-dose-rate irradiation in mice was evaluated in terms of the amount of DNA damage in the spleen analyzed by a comet assay. C57BL/ 6N female mice were irradiated with 0.5 Gy of (137)Cs gamma rays at 1.2 mGy/h; thereafter, a challenge dose (0.4, 0.8 or 1.6 Gy) at a high dose rate was given. Less DNA damage was observed in the spleen cells of preirradiated mice than in those of mice that received the challenge dose only; an adaptive response in terms of DNA damage was induced by long-term low-dose-rate irradiation in mice. The gene expression of catalase and Mn-SOD was significantly increased in the spleen after 23 days of the low-dose-rate radiation (0.5 Gy). In addition, the enzymatic activity of catalase corresponded to the gene expression level; the increase in the activity was observed at day 23 (0.5 Gy). These results suggested that an enhancement of the antioxidative capacities played an important role in the reduction of initial DNA damage by low-dose-rate radiation.  相似文献   

17.
Human melanoma cells that are resistant to gamma rays were irradiated with 14 MeV neutrons given at low doses ranging from 5 cGy to 1.12 Gy at a very low dose rate of 0.8 mGy min(-1) or a moderate dose rate of 40 mGy min(-1). The biological effects of neutrons were studied by two different methods: a cell survival assay after a 14-day incubation and an analysis of chromosomal aberrations in metaphases collected 20 h after irradiation. Unusual features of the survival curve at very low dose rate were a marked increase in cell killing at 5 cGy followed by a plateau for survival from 10 to 32.5 cGy. The levels of induced chromosomal aberrations showed a similar increase for both dose rates at 7.5 cGy and the existence of a plateau at the very low dose rate from 15 to 30 cGy. The existence of a plateau suggests that a repair process after low-dose neutrons might be induced after a threshold dose of 5-7.5 cGy which compensates for induced damage from doses as high as 32.5 cGy. These findings may be of interest for understanding the relative biological effectiveness of neutrons and the effects of environmental low-dose irradiation.  相似文献   

18.
Mice heterozygous for Trp53 are radiation-sensitive and cancer-prone, spontaneously developing a variety of cancer types. Osteosarcomas in the spine lead to paralysis, while lymphomas lead rapidly to death, distinct events that provide objective measures of latency. The effects of a single low-dose (10 or 100 mGy), low-dose-rate (0.5 mGy/min) (60)Co gamma irradiation on lymphoma or spinal osteosarcoma frequency and latency, defined as time of death or of onset of paralysis, respectively, were examined. Compared to spontaneous lymphomas or to spinal osteosarcomas leading to paralysis in unexposed mice, an exposure of 7-8-week-old Trp53(+/-) mice to 10 or 100 mGy had no significant effect on tumor frequency, indicating no effect on tumor initiation. All tumors are therefore assumed to be of spontaneous origin. However, a 10-mGy exposure reduced the risk of both lymphomas and spinal osteosarcomas by significantly increasing tumor latency, indicating that the main in vivo effect of a low-dose exposure is a reduction in the rate at which spontaneously initiated cells progress to malignancy. The effect of this adaptive response persisted for the entire life span of all the animals that developed these tumors. Exposure to 100 mGy delayed lymphoma latency longer than the 10-mGy exposure. However, the 100-mGy dose increased spinal osteosarcoma risk by decreasing overall latency compared to unexposed control mice. That result suggested that this higher dose was in a transition zone between reduced and increased risk, but that the dose at which the transition occurs varies with the tumor type.  相似文献   

19.
Radiation-induced adaptive response belongs to the group of non-targeted effects that do not require direct exposure of the cell nucleus by radiation. It is described as the reduced damaging effect of a challenging radiation dose when induced by a previous low priming dose. Adaptive responses have been observed in vitro and in vivo using various indicators of cellular damage, such as cell lethality, chromosomal aberrations, mutation induction, radiosensitivity, and DNA repair. Adaptive response can be divided into three successive biological phenomena, the intracellular response, the extracellular signal, and the maintenance. The intracellular response leading to adaptation of a single cell is a complex biological process including induction or suppression of gene groups. An extracellular signal, the nature of which is unknown, may be sent by the affected cell to neighbouring cells causing them to adapt as well. This occurs either by a release of diffusible signalling molecules or by gap-junction intercellular communication. Adaptive response can be maintained for periods ranging from of a few hours to several months. Constantly increased levels of reactive oxygen species (ROS) or nitric oxide (NO) have been observed in adapted cells and both factors may play a role in the maintenance process. Although adaptive response seems to function by an on/off principle, it is a phenomenon showing a high degree of inter- and intraindividual variability. It remains to be seen to what extent adaptive response is functional in humans at relevant dose and dose-rate exposures. A better understanding of adaptive response and other non-targeted effects is needed before they can be confirmed as risk estimate factors for the human population at low levels of ionising radiation.  相似文献   

20.
High doses of ionising radiation damage the heart by an as yet unknown mechanism. A concern for radiological protection is the recent epidemiological data indicating that doses as low as 100-500 mGy may induce cardiac damage. The aim of this study was to identify potential molecular targets and/or mechanisms involved in the pathogenesis of low-dose radiation-induced cardiovascular disease. The vascular endothelium plays a pivotal role in the regulation of cardiac function and is therefore a potential target tissue. We report here that low-dose radiation induced rapid and time-dependent changes in the cytoplasmic proteome of the human endothelial cell line EA.hy926. The proteomes were investigated at 4 and 24 h after irradiation at two different dose rates (Co-60 gamma ray total dose 200 mGy; 20 mGy/min and 190 mGy/min) using 2D-DIGE technology. Differentially expressed proteins were identified, after in-gel trypsin digestion, by MALDI-TOF/TOF tandem mass spectrometry, and peptide mass fingerprint analyses. We identified 15 significantly differentially expressed proteins, of which 10 were up-regulated and 5 down-regulated, with more than ±1.5-fold difference compared with unexposed cells. Pathways influenced by the low-dose exposures included the Ran and RhoA pathways, fatty acid metabolism and stress response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号