首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Developing of multi-target HIV-1 entry inhibitors represents an important avenue of drug therapy. Two such inhibitors are hexa-arginine-neomycin-conjugate (NeoR6) and nona-d-arginine-neomycin-conjugate (Neo-r9). Our findings that NeoR6-resistant mutations appear in the gp120 constant regions; and NeoR6 is not CCR5 antagonist, but inhibits CXCR4 and CCR5 HIV-1 using isolates, led us to suggest that NeoR6 may inhibit HIV-1 entry by interfering with the CD4-gp120 binding. To support this notion, we constructed a homology model of unliganded HIV-1IIIB gp120 and docked NeoR6 and Neo-r9 to it, using a multistep docking procedure: geometric-electrostatic docking by MolFit; flexible ligand docking by Autodock3 and final refinement of the obtained complexes by Discover3. Binding free energies were calculated by MM-PBSA methodology. The model predicts competitive inhibition of CD4-gp120 binding by NeoR6 and Neo-r9. We determined plausible binding sites between constructed CD4-bound gp120 trimer and homology modeled membranal CXCR4, and tested NeoR6 and Neo-r9 interfering with this interaction. These models support our notion that another mechanism of anti-HIV-1 activity of NeoR6 is inhibition of gp120-CXCR4 binding. These structural models and interaction of NeoR6 and Neo-r9 with gp120 and CXCR4 provide a powerful approach for structural based drug design for selective targeting of HIV-1 entry and/or for inhibition of other retroviruses with similar mechanism of entry.  相似文献   

2.
The HIV-1 envelope glycoprotein gp120 interacts consecutively with CD4 and CCR5 to mediate the entry of R5-HIV-1 strains into target cells. The N-terminus of CCR5, which contains several sulfated tyrosines, plays a critical role in gp120-CCR5 binding and, consequently, in viral entry. Here, we demonstrate that a tyrosine sulfated peptide, reproducing the entire N-terminal extracellular region of CCR5, its unsulfated analogue, and a point-mutated peptide are unable to inhibit R5-HIV-1 mediated infection, competing with the entire CCR5 in the formation of gp120-CD4-CCR5 complex. Surprisingly, these peptides show the capability of enhancing HIV-1 infection caused by X4 strains through the up-regulation of both CD4 and CXCR4 receptors.  相似文献   

3.
A series of peptides patterned on the principal neutralizing domain of the HIV-1 envelope glycoprotein gp120 have been synthesized by solid-phase techniques. Interestingly, in vitro experiments have shown that some of these peptides specifically interact with CD4 and, in particular, that the peptide corresponding to the sequence 307–330 of the HIV-1 MN isolate was able to enhance infection in a dose- specific and not a strain-restricted way. To bypass problems observed in preliminary runs, several peptides were synthesized by both Fmoc and Boc chemistry. Comparison of the two strategies has allowed the set up of convenient protocols for the preparation of the target peptides in good yield, and with the high-purity grade needed for biological and physicochemical studies. Since the biological effects were present in the carboxyl-free C-terminal linear peptide but not in the amidated C-terminal analogue, preliminary conformational studies by circular dichroism and nuclear magnetic resonance techniques were also performed in an attempt to correlate these effects with possible contributions of structured conformations as predicted by theoretical calculations. The possibility of a β-turn structure for the crucial Gly-Pro-Gly-Arg sequence has been confirmed by 2D NMR experiments. Ongoing studies suggest the exploitation of the activating properties of the MN-derived peptides to design a more sensitive and innovative serological test based on the virus itself and not on anti-HIV antibodies, as is the case for the large majority of tests currently in use. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
We have identified oleuropein (Ole) and hydroxytyrosol (HT) as a unique class of HIV-1 inhibitors from olive leaf extracts effective against viral fusion and integration. We used molecular docking simulation to study the interactions of Ole and HT with viral targets. We find that Ole and HT bind to the conserved hydrophobic pocket on the surface of the HIV-gp41 fusion domain by hydrogen bonds with Q577 and hydrophobic interactions with I573, G572, and L568 on the gp41 N-terminal heptad repeat peptide N36, interfering with formation of the gp41 fusion-active core. To test and confirm modeling predications, we examined the effect of Ole and HT on HIV-1 fusion complex formation using native polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Ole and HT exhibit dose-dependent inhibition on HIV-1 fusion core formation with EC(50)s of 66-58nM, with no detectable toxicity. Our findings on effects of HIV-1 integrase are reported in the subsequent article.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号