首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of infectious disease in the survival and adaptation of animal populations is rapidly becoming apparent. Throughout evolution, animal species have been continually afflicted with devastating disease outbreaks which have influenced the demographic and genetic status of the populations. Some general population consequences of such epidemics include selection for disease resistance, the occasional alteration of host gene frequencies by a genetic 'founder effect' after an outbreak, and genetic adaptation of parasites to abrogate host defense mechanisms. A wide variety of host cellular genes which are polymorphic within species and which confer a regulatory effect on the outcome of infectious diseases has recently been discovered. The critical importance of maintaining genetic diversity with respect to disease defense genes in natural populations is indicated by certain populations which have reduced genetic variability and apparent increased vulnerability to infectious disease.  相似文献   

2.
R E Mickens 《Bio Systems》1992,26(3):193-198
We investigate the properties of a discrete-time model for the spread of an infectious disease that does not confer permanent immunity. The contact rate is assumed to be constant. Our major result is that oscillations occur in the levels of the diseased population. The consequences of vaccination are also studied.  相似文献   

3.
We analyze models for the evolutionary dynamics of viral or other infectious agents within a host. We study how the invasion of a new strain affects the composition and diversity of the viral population. We show that--under strain-specific immunity--the equilibrium abundance of uninfected cells declines during viral evolution. In addition, for cytotoxic immunity the absolute force of infection, and for non-cytotoxic immunity the absolute cellular virulence increases during viral evolution. We prove global stability by means of Lyapunov functions. These unidirectional trends of virus evolution under immune selection do not hold for general cross-reactive immune responses, which introduce frequency-dependent selection among viral strains. Therefore, appropriate cross-reactive immunity can lead to a viral evolution within a host which limits the extent of the disease.  相似文献   

4.
Disease can generate intense selection pressure on host populations, but here we show that acquired immunity in a population subject to repeated disease outbreaks can impede the evolution of genetic disease resistance by maintaining susceptible genotypes in the population. Interference between the life-history schedule of a species and periodicity of the disease has unintuitive effects on selection intensity, and stochasticity in outbreak period further reduces the rate of spread of disease-resistance alleles. A general age-structured population genetic model was developed and parameterized using empirical data for phocine distemper virus (PDV) epizootics in harbor seals. Scenarios with acquired immunity had lower levels of epizootic mortality compared with scenarios without acquired immunity for the first PDV outbreaks, but this pattern was reversed after about five disease cycles. Without acquired immunity, evolution of disease resistance was more rapid, and long-term population size variation is efficiently dampened. Acquired immunity has the potential to significantly influence rapid evolutionary dynamics of a host population in response to age-structured disease selection and to alter predicted selection intensities compared with epidemiological models that do not consider such feedback. This may have important implications for evolutionary population dynamics in a range of human, agricultural, and wildlife disease settings.  相似文献   

5.
Natural populations vary tremendously in their susceptibility to infectious disease agents. The factors (environmental or genetic) that underlie this variation determine the impact of disease on host population dynamics and evolution, and affect our capacity to contain disease outbreaks and to enhance resistance in agricultural animals and disease vectors. Here, we show that changes in the environmental conditions under which female Daphnia magna are kept can more than halve the susceptibility of their offspring to bacterial infection. Counter-intuitively, and unlike the effects typically observed in vertebrates for transfer of immunity, mothers producing offspring under poor conditions produced more resistant offspring than did mothers producing offspring in favourable conditions. This effect occurred when mothers who were well provisioned during their own development then found themselves reproducing in poor conditions. These effects likely reflect adaptive optimal resource allocation where better quality offspring are produced in poor environments to enhance survival. Maternal exposure to parasites also reduced offspring susceptibility, depending on host genotype and offspring food levels. These maternal responses to environmental conditions mean that studies focused on a single generation, and those in which environmental variation is experimentally minimized, may fail to describe the crucial parameters that influence the spread of disease. The large maternal effects we report here will, if they are widespread in nature, affect disease dynamics, the level of genetic polymorphism in populations, and likely weaken the evolutionary response to parasite-mediated selection.  相似文献   

6.
Exposure to low doses of pathogens that do not result in the host becoming infectious may ‘prime’ the immune response and increase protection to subsequent challenge. There is increasing evidence that such immune priming is a widespread and important feature of invertebrate host–pathogen interactions. Immune priming clearly has implications for individual hosts but will also have population-level implications. We present a susceptible–primed–infectious model—in contrast to the classic susceptible–infectious–recovered framework—to investigate the impacts of immune priming on pathogen persistence and population stability. We describe impacts of immune priming on the epidemiology of the disease in both constant and seasonal environments. A key result is that immune priming may act to destabilize population dynamics. In particular, when the proportion of individuals becoming primed rather than infected is high, but this priming does not confer full immunity, the population may be strongly destabilized through the generation of limit cycles. We discuss the implications of our model both in the context of invertebrate immunity and more widely.  相似文献   

7.
Major histocompatibility (MHC) molecules are encoded by extremely polymorphic genes and play a crucial role in vertebrate immunity. Natural selection favors MHC heterozygous hosts because individuals heterozygous at the MHC can present a larger diversity of peptides from infectious pathogens than homozygous individuals. Whether or not heterozygote advantage is sufficient to account for a high degree of polymorphism is controversial, however. Using mathematical models we studied the degree of MHC polymorphism arising when heterozygote advantage is the only selection pressure. We argue that existing models are misleading in that the fitness of heterozygotes is not related to the MHC alleles they harbor. To correct for this, we have developed novel models in which the genotypic fitness of a host directly reflects the fitness contributions of its MHC alleles. The mathematical analysis suggests that a high degree of polymorphism can only be accounted for if the different MHC alleles confer unrealistically similar fitnesses. This conclusion was confirmed by stochastic simulations, including mutation, genetic drift, and a finite population size. Heterozygote advantage on its own is insufficient to explain the high population diversity of the MHC.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

8.
Pseudomonas aeruginosa is an environmental microorganism and a causative agent of diverse acute and chronic, biofilm-associated infections. Advancing research-based knowledge on its adaptation to conditions within the human host is bound to reveal novel strategies and targets for therapeutic intervention. Here, we investigated the traits that P. aeruginosa PA14 as well as a virulence attenuated ΔlasR mutant need to survive in selected murine infection models. Experimentally, the genetic programs that the bacteria use to adapt to biofilm-associated versus acute infections were dissected by passaging transposon mutant libraries through mouse lungs (acute) or mouse tumours (biofilm-infection). Adaptive metabolic changes of P. aeruginosa were generally required during both infection processes. Counter-selection against flagella expression was observed during acute lung infections. Obviously, avoidance of flagella-mediated activation of host immunity is advantageous for the wildtype bacteria. For the ΔlasR mutant, loss of flagella did not confer a selective advantage. Apparently, other pathogenesis mechanisms are active in this virulence attenuated strain. In contrast, the infective process of P. aeruginosa in the chronic biofilm model apparently required expression of flagellin. Together, our findings imply that the host immune reactions against the infectious agent are very decisive for acuteness and duration of the infectious disease. They direct disease outcome.  相似文献   

9.
The evolution of SARS-CoV-2 remains poorly understood. Theory predicts a group-structured population with selection acting principally at two levels: the pathogen individuals and the group of pathogens within a single host individual. Rapid replication of individual viruses is selected for, but if this replication debilitates the host before transmission occurs, the entire group of viruses in that host may perish. Thus, rapid transmission can favor more pathogenic strains, while slower transmission can favor less pathogenic strains. Available data suggest that SARS-CoV-2 may follow this pattern. Indeed, high population density and other circumstances that favor rapid transmission may also favor more deadly strains. Health care workers, exposed to pathogenic strains of hospitalized patients, may be at greater risk. The low case fatality rate on the Diamond Princess cruise ship may reflect the founder effect—an initial infection with a mild strain. A vaccine made with one strain may confer limited immunity to other strains. Variation among strains may lead to the rapid evolution of resistance to therapeutics. Finally, if less pathogenic strains are largely associated with mild disease, rather than treating all SARS-CoV-2 positive individuals equally, priority could be focused on testing and contact tracing the most seriously symptomatic patients.  相似文献   

10.
Infectious hematopoietic necrosis is a serious viral disease of salmonids, including rainbow trout Oncorhynchus mykiss, and causes tremendous economic losses to the rainbow trout farming industry. Major histocompatibility complex (MHC) genes are crucial elements of adaptive immunity in vertebrate organisms and have been linked with the resistance to numerous pathogenic diseases. In this study, polymerase chain reaction‐single strand conformation polymorphism (PCR‐SSCP) followed by cloning and sequencing were used to examine polymorphisms in the DAA genes (specifically DAA exon 2 of MHC class IIα) of rainbow trout and investigate their association with the infectious hematopoietic necrosis virus (IHNV) resistance in rainbow trout. Seventeen alleles were resolved, including 13 novel alleles. Individuals possessed between two and five alleles, indicating that the genome harbours at least three closely‐related DAA exon 2 loci. The ratio of non‐synonymous to synonymous nucleotide substitutions suggested that DAA exon 2 is under positive selection. A greater variability of amino acids and non‐synonymous nucleotide substitution rate was evident in the peptide‐binding region (PBR) than in the non‐PBR (27.75%). Importantly, the analyses revealed that certain MHC class IIα alleles appear to confer resistance to IHNV in rainbow trout, while others confer susceptibility. The most common alleles in the resistant populations of rainbow trout, Onmy‐DAA*1301 and Onmy‐DAA*0304, confer resistance to IHNV and were not present in the susceptible population. Hence, these alleles may be ideal molecular markers that can assist the breeding of IHNV resistance in rainbow trout.  相似文献   

11.
The question why different host individuals within a population differ with respect to infection resistance is of fundamental importance for understanding the mechanisms of parasite-mediated selection. We addressed this question by infecting wild-caught captive male greenfinches with intestinal coccidian parasites originating either from single or multiple hosts. Birds with naturally low pre-experimental infection retained their low infection status also after reinfection with multiple strains, indicating that natural infection intensities confer information about the phenotypic ability of individuals to resist novel strains. Exposure to novel strains did not result in protective immunity against the subsequent infection with the same strains. Infection with multiple strains resulted in greater virulence than single-strain infection, indicating that parasites originating from different host individuals are genetically diverse. Our experiment thus demonstrates the validity of important but rarely tested assumptions of many models of parasite-mediated selection in a wild bird species and its common parasite.  相似文献   

12.
Understanding the factors controlling the distribution of parasites within their host population is fundamental to the wider understanding of parasite epidemiology and ecology. To explore changes in parasite aggregation, Taylor's power law was used to examine the distributions of five gut helminths of the wild rabbit. Aggregation was found to be a dynamic process that varied with year, season, host sex, age class, and myxomatosis. Yearly and seasonal changes are thought, in the main, to be the result of variations in weather conditions acting upon infectious stages (or intermediate hosts). Evidence in support of this was the comparatively low degree of fluctuation in the aggregation of the pinworm, Passalurus ambiguus, as the infectious stage of this parasite is likely to be less susceptible to environmental variation. Host age had a marked effect on the level of aggregation of all parasites, but this effect varied between parasite species. P. ambiguus, Trichostrongylus retortaeformis and Cittotaenia denticulata aggregation were lower in adult than juvenile rabbits whilst Graphidium strigosum and Mosgovoyia pectinata aggregation tended to increase with age. Host immunity is thought to be responsible for these differences. Differences in aggregation for different parasites were also seen when the rabbit population was split into males and females. Myxomatosis had a marked effect on helminth distribution with substantially less aggregation in rabbits showing clinical signs of the disease.  相似文献   

13.
In this paper, we develop the theory of a state-reproduction number for a multistate class age structured epidemic system and apply it to examine the asymptomatic transmission model. We formulate a renewal integral equation system to describe the invasion of infectious diseases into a multistate class age structured host population. We define the state-reproduction number for a class age structured system, which is the net reproduction number of a specific host type and which plays an analogous role to the type-reproduction number [M.G. Roberts, J.A.P. Heesterbeek, A new method for estimating the effort required to control an infectious disease, Proc. R. Soc. Lond. B 270 (2003) 1359; J.A.P. Heesterbeek, M.G. Roberts, The type-reproduction number T in models for infectious disease control, Math. Biosci. 206 (2007) 3] in discussing the critical level of public health intervention. The renewal equation formulation permits computations not only of the state-reproduction number, but also of the generation time and the intrinsic growth rate of infectious diseases.Subsequently, the basic theory is applied to capture the dynamics of a directly transmitted disease within two types of infected populations, i.e., asymptomatic and symptomatic individuals, in which the symptomatic class is observable and hence a target host of the majority of interventions. The state-reproduction number of the symptomatic host is derived and expressed as a measurable quantity, leading to discussion on the critical level of case isolation. The serial interval and other epidemiologic indices are computed, clarifying the parameters on which these indices depend. As a practical example, we illustrate the eradication threshold for case isolation of smallpox. The generation time and serial interval are comparatively examined for pandemic influenza.  相似文献   

14.
 We develop a model that describes the dynamics of a finite number of strains that confer partial cross-protection among strains. The immunity structure of the host population is captured by an index-set notation where the index specifies the set of strains to which the host has been exposed. This notation allows us to derive threshold conditions for the invasion of a new strain and to show the existence of an endemic multi-strain equilibrium in a special case. The dynamics of systems consisting of more than two strains can exhibit sustained oscillations caused by an overshoot in the immunity to a specific strain if cross-protection is sufficiently strong. Received 15 January 1996; received in revised form 24 June 1996  相似文献   

15.
Genes that play key roles in host immunity such as the major histocompatibility complex (MHC) in vertebrates are expected to be major targets of selection. It is well known that environmental conditions can have an effect on host–parasite interactions and may thus influence the selection on MHC. We analyzed MHC class IIß variability over 35 years in a population of perch (Perca fluviatilis) from the Baltic Sea that was split into two populations separated from each other. One population was subjected to heating from cooling water of a nuclear power plant and was isolated from the surrounding environment in an artificial lake, while the other population was not subjected to any change in water temperature (control). The isolated population experienced a change of the allelic composition and a decrease in allelic richness of MHC genes compared to the control population. The two most common MHC alleles showed cyclic patterns indicating ongoing parasite–host coevolution in both populations, but the alleles that showed a cyclic behavior differed between the two populations. No such patterns were observed at alleles from nine microsatellite loci, and no genetic differentiation was found between populations. We found no indications for a genetic bottleneck in the isolated population during the 35 years. Additionally, differences in parasitism of the current perch populations suggest that a change of the parasite communities has occurred over the isolation period, although the evidence in form of in‐depth knowledge of the change of the parasite community over time is lacking. Our results are consistent with the hypothesis of a selective sweep imposed by a change in the parasite community.  相似文献   

16.
Host genetic factors exert significant influences on differential susceptibility to many infectious diseases. In addition, population structure of both host and parasite may influence disease distribution patterns. In this study, we assess the effects of population structure on infectious disease in two populations in which host genetic factors influencing susceptibility to parasitic disease have been extensively studied. The first population is the Jirel population of eastern Nepal that has been the subject of research on the determinants of differential susceptibility to soil-transmitted helminth infections. The second group is a Brazilian population residing in an area endemic for Trypanosoma cruzi infection that has been assessed for genetic influences on differential disease progression in Chagas disease. For measures of Ascaris worm burden, within-population host genetic effects are generally more important than host population structure factors in determining patterns of infectious disease. No significant influences of population structure on measures associated with progression of cardiac disease in individuals who were seropositive for T. cruzi infection were found.  相似文献   

17.
Continuous deterministic models are used to investigate the relationship between the epidemiology of endemic infectious disease and the genetics of natural selection in the host population when a specific genetic locus controls susceptibility to disease under a variety of circumstances. One locus, two allele genes are considered in the contexts of haploid and diploid host populations while the agent of infection is assumed to be invariant. It is found that polymorphic equilibria exist and are stable for certain parameter combinations in each of the cases studied. The equilibrium levels of gene frequencies and disease prevalence depend on both genetic and epidemic factors.  相似文献   

18.
Genetic selection for improved disease resistance is an important part of strategies to combat infectious diseases in agriculture. Quantitative genetic analyses of binary disease status, however, indicate low heritability for most diseases, which restricts the rate of genetic reduction in disease prevalence. Moreover, the common liability threshold model suggests that eradication of an infectious disease via genetic selection is impossible because the observed-scale heritability goes to zero when the prevalence approaches zero. From infectious disease epidemiology, however, we know that eradication of infectious diseases is possible, both in theory and practice, because of positive feedback mechanisms leading to the phenomenon known as herd immunity. The common quantitative genetic models, however, ignore these feedback mechanisms. Here, we integrate quantitative genetic analysis of binary disease status with epidemiological models of transmission, aiming to identify the potential response to selection for reducing the prevalence of endemic infectious diseases. The results show that typical heritability values of binary disease status correspond to a very substantial genetic variation in disease susceptibility among individuals. Moreover, our results show that eradication of infectious diseases by genetic selection is possible in principle. These findings strongly disagree with predictions based on common quantitative genetic models, which ignore the positive feedback effects that occur when reducing the transmission of infectious diseases. Those feedback effects are a specific kind of Indirect Genetic Effects; they contribute substantially to the response to selection and the development of herd immunity (i.e., an effective reproduction ratio less than one).  相似文献   

19.
Several factors contribute towards a decrease in the prevalence of infectious disease in a population. These include active control measures, active immunisation, and improvement in the socioeconomic state of the population. There appears, however, to be a progressive increase in the resistance of a population in relation to the length of time the population has been exposed to an agent. This increasing resistance is currently thought to be an expression of natural selection but transmission of actively acquired immunity cannot be ruled out and in the light of current evidence remains a highly probable contributory factor.  相似文献   

20.
In bacteria and archaea, viruses are the primary infectious agents, acting as virulent, often deadly pathogens. A form of adaptive immune defense known as CRISPR-Cas enables microbial cells to acquire immunity to viral pathogens by recognizing specific sequences encoded in viral genomes. The unique biology of this system results in evolutionary dynamics of host and viral diversity that cannot be fully explained by the traditional models used to describe microbe-virus coevolutionary dynamics. Here, we show how the CRISPR-mediated adaptive immune response of hosts to invading viruses facilitates the emergence of an evolutionary mode we call distributed immunity - the coexistence of multiple, equally-fit immune alleles among individuals in a microbial population. We use an eco-evolutionary modeling framework to quantify distributed immunity and demonstrate how it emerges and fluctuates in multi-strain communities of hosts and viruses as a consequence of CRISPR-induced coevolution under conditions of low viral mutation and high relative numbers of viral protospacers. We demonstrate that distributed immunity promotes sustained diversity and stability in host communities and decreased viral population density that can lead to viral extinction. We analyze sequence diversity of experimentally coevolving populations of Streptococcus thermophilus and their viruses where CRISPR-Cas is active, and find the rapid emergence of distributed immunity in the host population, demonstrating the importance of this emergent phenomenon in evolving microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号