共查询到20条相似文献,搜索用时 15 毫秒
1.
To what extent, and under which circumstances, are population dynamics influenced by concurrent natural selection? Density dependence and environmental stochasticity are generally expected to subsume any selective modulation of population growth rate, but theoretical considerations point to conditions under which selection can have an appreciable impact on population dynamics. By contrast, empirical research has barely scratched the surface of this fundamental question in population biology. Here, we present a diverse body of mostly empirical evidence that demonstrates how selection can influence population dynamics, including studies of small populations, metapopulations, cyclical populations and host-pathogen interactions. We also discuss the utility, in this context, of inferences from molecular genetic data, placing them within the broader framework of quantitative genetics and life-history evolution. 相似文献
2.
Natural selection was studied in the context of density-dependent population growth using a single locus, continuous time model for the rates of change of population size and allele frequency. The maximization principle of density-dependent selection was applied to a class of fitness expressions with explicit recruitment and mortality terms. Three general results were obtained: First, at low population densities, the genetic basis of selection is the difference between the mean recruitment rate and the mean mortality rate. Second, at densities much higher than the equilibrium population size, selection is expected to act to minimize the mean mortality rate. Third, as the population approaches its equilibrium density, selection is predicted to maximize the ratio of the mean recruitment rate to the mean mortality rate. 相似文献
3.
4.
5.
The entropy H(po,p*) of a population with the initial allele frequency po given the equilibrium polymorphic frequency p* has been proposed as a measure of natural selection. In the present paper, we have extended this concept to include a particular aspect of density-dependent selection. We compared size trajectory of a population initially at genetic equilibrium, N(t), with the size trajectories of populations not initially at p*,N(t), but which do eventually converge to a common equilibrium allele frequency and equilibrium density, N*. The following experimentally testable hyopthesis was established. The total area defined by the difference between the trajectories of N(t) and N(t) as they converge to N* is directly proportional to the fitness entropy when population size is transformed using the density-dependent fitness value. Two properties of this relationship were noted. First, it is independent of the magnitude of natural selection and, secondly, it does not depend upon the initial population density as long as the equilibrium and nonequilibrium populations have the same initial numbers. This hypothesis was evaluated with experimental data on the flour beetle Tribolium castaneum. 相似文献
6.
Understanding and predicting the distribution of organisms in heterogeneous environments lies at the heart of ecology, and the theory of density-dependent habitat selection (DDHS) provides ecologists with an inferential framework linking evolution and population dynamics. Current theory does not allow for temporal variation in habitat quality, a serious limitation when confronted with real ecological systems. We develop both a stochastic equivalent of the ideal free distribution to study how spatial patterns of habitat use depend on the magnitude and spatial correlation of environmental stochasticity and also a stochastic habitat selection rule. The emerging patterns are confronted with deterministic predictions based on isodar analysis, an established empirical approach to the analysis of habitat selection patterns. Our simulations highlight some consistent patterns of habitat use, indicating that it is possible to make inferences about the habitat selection process based on observed patterns of habitat use. However, isodar analysis gives results that are contingent on the magnitude and spatial correlation of environmental stochasticity. Hence, DDHS is better revealed by a measure of habitat selectivity than by empirical isodars. The detection of DDHS is but a small component of isodar theory, which remains an important conceptual framework for linking evolutionary strategies in behavior and population dynamics. 相似文献
7.
Ebbe Thue Poulsen 《Journal of mathematical biology》1979,8(4):325-343
The life-cycle of a species with separate generations is divided into a reproduction phase and a growing-up phase. In the reproduction phase we assume random mating and selection due to genotype differences in fecundity of the parents and viability of the offspring. During the growing-up phase we assume a (deterministic) death process in continuous time with death rates for the genotypes which increase linearly with the genotype population sizes.In the absence of genotype differences the model gives logistic population regulation. With genotype differences the model generalizes the usual separate generations selection patterns. In addition to these we exhibit cases with three polymorphic equilibria or with a stable cycle. 相似文献
8.
9.
Hyun Kang Gene Namkoong 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1988,75(2):333-339
Summary It is well known that truncation selection is the most efficient form of directional selection in terms of changing gene frequency. In this paper we show circumstances where truncation selection followed by a balanced mating generates inbreeding effective population size smaller than that generated by a selection that assigns mating frequencies to individuals according to their breeding values, where both selection schemes give the same expected performance of selected individuals (selection differential). Breeding values of selected individuals and the weight used to determine mating frequencies are assumed to be linearly distributed on a performance scales, x. To assign mating frequencies to the individuals in the weighting system, the selected individuals are grouped using a constant , and ith group in the interval xi, xi + . With small number of groups, say 2 or 3, the weighting system in general generates inbreeding effective population size that is larger than that generated by a truncation selection. As the number of the groups increases, truncation selection generates larger effective numbers. 相似文献
10.
11.
Muirhead CA 《Evolution; international journal of organic evolution》2001,55(8):1532-1541
This paper describes a new approach to modeling population structure for genes under strong balancing selection of the type seen in plant self-incompatibility systems and the major histocompatibility complex (MHC) system of vertebrates. Simple analytic solutions for the number of alleles maintained at equilibrium and the expected proportion of alleles shared between demes at various levels are derived and checked against simulation results. The theory accurately captures the dynamics of allele number in a subdivided population and identifies important values of m (migration rate) at which allele number and distribution change qualitatively. Starting from a panmictic population, as migration among demes decreases a qualitative change in dynamics is seen at approximately m(crit) approximately equal to the square root of(s/4piNT) where NT is the total population size and s is a measure of the strength of selection. At this point, demes can no longer maintain their panmictic allele number, due to increasing isolation from the total population. Another qualitative change occurs at a migration rate on the same order of magnitude as the mutation rate, mu. At this point, the demes are highly differentiated for allele complement, and the total number of alleles in the population is increased. Because in general u < m<(crit) at intermediate migration rates slightly fewer alleles may be maintained in the total population than are maintained at panmixia. Within this range, total allele number may not be the best indicator of whether a population is effectively panmictic, and some caution should be used when interpreting samples from such populations. The theory presented here can help to analyze data from genes under balancing selection in subdivided populations. 相似文献
12.
13.
Life is supported by a myriad of chemical reactions. To describe the overall process we have formulated entropy for an open system undergoing chemical reactions. The entropy formula allows us to recognize various ways for the system to move towards more probable states. These correspond to the basic processes of life i.e. proliferation, differentiation, expansion, energy intake, adaptation and maturation. We propose that the rate of entropy production by various mechanisms is the fitness criterion of natural selection. The quest for more probable states results in organization of matter in functional hierarchies. 相似文献
14.
Pseudomonas sp. ADP harbouring the atrazine catabolic plasmid ADP1 was subcultured in liquid medium containing atrazine as sole source of nitrogen. After approximately 320 generations, a new population evolved which replaced the initial population. This newly evolved population grew faster and degraded atrazine more rapidly than the initial population. Plasmid profiles and Southern blot analyses revealed that the evolved strain, unlike the ancestral strain, presented a tandem duplication of the atzB gene encoding the second enzyme of the atrazine catabolic pathway responsible for the transformation of hydroxyatrazine to N-isopropylammelide. This duplication resulted from a homologous recombination that occurred between two direct repeats of 6.2 kb flanking the atzB gene and constituted by the insertion sequences IS 1071 , IS Pps1 and a pdhL homologous sequence. This study highlights the IS-mediated plasticity of atrazine-degrading potential and demonstrates that insertion sequences not only help to disperse the atrazine-degrading gene but also improve the fitness of the atrazine-degrading population. 相似文献
15.
A. N. Evsyukov 《Russian Journal of Genetics》2014,50(1):71-81
Fitness coefficients and other quantitative parameters of selection associated with the generalized color blindness gene CB+ were obtained for three ethnogeographic population groups, including Belarusians from Belarus, ethnic populations of the Volga-Ural region, and ethnic populations of Siberia and the Far East of Russia. All abnormalities encoded by the OPN1LW and OPN1MW loci were treated as deviations from normal color perception. Coefficients were estimated from an approximation of the observed CB+ frequency distributions to the theoretical stationary distribution for the Wright island model. This model takes into account the pressure of migrations, selection, and random genetic drift, while the selection parameters are represented in the form of the distribution parameters. In the populations of Siberia and Far East, directional selection in favor of normal color vision and the corresponding allele CB- was observed. In the Belarusian and ethnic populations of the Volga-Ural region, stabilizing selection was observed. The selection intensity constituted 0.03 in the Belarusian; 0.22 in the ethnic populations of the Volga-Ural region; and 0.24 in ethnic populations of Siberia and Far East. 相似文献
16.
John M. Emlen 《Theoretical population biology》1984,25(1):62-77
The nature of the functional response may be qualitatively understood as follows. Sigmoid responses to one food type may arise, in the presence of alternate foods, as a result of optimal feeding and foraging behavior. Sigmoid curves resulting from this cause I term class A curves. The same curve may also arise in the absence of alternate foods as a result of learning, individual variations in the level of food density at which predators begin feeding, or training effects. The latter I have termed class B curves. At very high food densities, a drop in food intake per predator might occur because of the tendency for predators to take easily found and captured items first and to become more selective when food is very common. Such “dome-shaped” curves have been found in the laboratory but should be rare in nature. Computer simulation of a three trophic-level system, using the phenotypic selection model of Emlen, indicates that natural selection acting on prey should encourage sigmoidality in the predator's class B functional response, at least in disturbed environments. The opposite force arises from selection acting on predators. However, given the magnitudes of growth efficiencies (see Eq. (8), it appears that at least for terrestrial vertebrates, selection on prey species is more important than selection on predators for determining functional responses. Accordingly, prey-predator systems occupying highly variable environments are expected to show more marked type III (class B) curves than systems in more stable areas. Finally, the role of functional response for prey-predator stability is discussed. Class A (alternate food) responses may result in population control for prey in multiple prey systems. Peterman and Pikitch have modeled systems in which type III functional response by predators, in systems where predation varies independently of prey, may lead to double equilibria. This picture is clouded, however, when predator populations are interactive with their food, though double equilibria are still possible (J. M. Emlen, 1984, “Population Biology: The Coevolution of Population Dynamics and Behavior,” Macmillan, New York, in press). 相似文献
17.
Brommer JE Merilä J Sheldon BC Gustafsson L 《Evolution; international journal of organic evolution》2005,59(6):1362-1371
Many morphological and life-history traits show phenotypic plasticity that can be described by reaction norms, but few studies have attempted individual-level analyses of reaction norms in the wild. We analyzed variation in individual reaction norms between laying date and three climatic variables (local temperature, local rainfall, and North Atlantic Oscillation) of 1126 female collared flycatchers (Ficedula albicollis) with a restricted maximum likehood linear mixed model approach using random-effect best linear unbiased predictor estimates for the elevation (i.e., expected laying date in the average environment) and slope (i.e., adjustment in laying date as a function of environment) of females' reaction norms. Variation in laying date was best explained by local temperature, and individual females differed in both the elevation and the slope of their laying date-temperature reaction norms. As revealed by animal model analyses, there was weak evidence for additive genetic variance of elevation (h2 +/- SE = 0.09 +/- 0.09), whereas there was no evidence for heritability of slope (h2 +/- SE = 0.00 +/- 0.01). Selection analysis, using a female's lifetime production of fledglings or recruits as an estimate of her fitness, revealed significant selection for a lower phenotypic value and breeding value for elevation (i.e., earlier laying date at the average temperature). There was selection for steeper phenotypic values of slope (i.e., greater plasticity in the adjustment of laying date to temperature), but no significant selection on the breeding values of slope. Although these results suggest that phenotypic laying date is influenced by additive genetic factors, as well as by an interaction with the environment, selection on plasticity would not produce an evolutionary response. 相似文献
18.
Bruce Anderson Marinus L. de Jager 《Biological reviews of the Cambridge Philosophical Society》2020,95(2):291-304
Biological mimicry has served as a salient example of natural selection for over a century, providing us with a dazzling array of very different examples across many unrelated taxa. We provide a conceptual framework that brings together apparently disparate examples of mimicry in a single model for the purpose of comparing how natural selection affects models, mimics and signal receivers across different interactions. We first analyse how model–mimic resemblance likely affects the fitness of models, mimics and receivers across diverse examples. These include classic Batesian and Müllerian butterfly systems, nectarless orchids that mimic Hymenoptera or nectar‐producing plants, caterpillars that mimic inert objects unlikely to be perceived as food, plants that mimic abiotic objects like carrion or dung and aggressive mimicry where predators mimic food items of their own prey. From this, we construct a conceptual framework of the selective forces that form the basis of all mimetic interactions. These interactions between models, mimics and receivers may follow four possible evolutionary pathways in terms of the direction of selection resulting from model–mimic resemblance. Two of these pathways correspond to the selective pressures associated with what is widely regarded as Batesian and Müllerian mimicry. The other two pathways suggest mimetic interactions underpinned by distinct selective pressures that have largely remained unrecognized. Each pathway is characterized by theoretical differences in how model–mimic resemblance influences the direction of selection acting on mimics, models and signal receivers, and the potential for consequent (co)evolutionary relationships between these three protagonists. The final part of this review describes how selective forces generated through model–mimic resemblance can be opposed by the basic ecology of interacting organisms and how those forces may affect the symmetry, strength and likelihood of (co)evolution between the three protagonists within the confines of the four broad evolutionary possibilities. We provide a clear and pragmatic visualization of selection pressures that portrays how different mimicry types may evolve. This conceptual framework provides clarity on how different selective forces acting on mimics, models and receivers are likely to interact and ultimately shape the evolutionary pathways taken by mimetic interactions, as well as the constraints inherent within these interactions. 相似文献
19.
Although much is known about the genetic basis of reproductive isolation between species, little is understood about its underlying evolutionary causes. A study of two very closely related, but reproductively isolated, plant species has provided some valuable insights. 相似文献
20.
In “Spandrels,” Gould and Lewontin criticized what they took to be an all-too-common conviction, namely, that adaptation to
current environments determines organic form. They stressed instead the importance of history. In this paper, we elaborate upon their concerns by appealing to other writings in which those issues are treated in greater
detail. Gould and Lewontin’s combined emphasis on history was three-fold. First, evolution by natural selection does not start
from scratch, but always refashions preexisting forms. Second, preexisting forms are refashioned by the selection of whatever
mutational variations happen to arise: the historical order of mutations needs to be taken into account. Third, the order
of environments and selection pressures also needs to be taken into account. 相似文献