首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Summary Recent studies on the interactions of soluble proteins, membrane proteins and enzymes with phospholipid model membranes are reviewed. Similarities between the properties of such systems and the behavior of biomembranes, such as alterations in the redox potential of cytochromec after binding to membranes and effects of phospholipid fluidity on (Na + K) ATPase activity, are emphasized. The degree of correspondence between the behavior of model systems and natural membranes encourages the continuing use of model membranes in studies on protein-lipid interactions. However, some of the data on the increase of surface pressure of phospholipid monolayers by proteins and increases in the permeability of liposomes indicate that many soluble proteins also have a capability to interact hydrophobically with phospholipids. Thus a sharp distinction between both peripheral and integral membrane proteins and non-membrane proteins are not seen by these techniques. Cautious use of such studies, however, should lead to greater understanding of the molecular basis of cell membrane structure and function in normal and pathological states. Studies implicating protein-lipid interactions and (Na + K) ATPase activity in membrane alterations in disease states are also briefly discussed.An invited article.  相似文献   

4.
Summary Members of theDinopbyceae are characterized by having permanently condensed chromosomes throughout the cell cycle. At interphase the chromosomes appear to have bands perpendicular to the long axis of the chromosome with a periodicity of 127 nm. Each band is composed of 2.5 nm fibers and 9.0 nm granules coiled into a helix around a central core of 9.0 nm fibers. Chromosome uncoiling has been correlated with the uptake of3[H]-thymidine. As chromosomes enter the uncoiling phase of the cell cycle they appear less dense and reveal a number of fibrous extensions. At later stages chromosomes completely uncoil into elongate fibers 127 nm in width. Chromosome unwinding corresponds to the peak in the uptake of3[H]-thymidine. Chromosomes observed on either side of the peak possess the typical interphase banding. This study demonstrates, for the first time, the fine structural details of chromosome uncoiling during a specific phase of the cell cycle. A new model of the Dinoflagellate chromonema has been derived from this study.  相似文献   

5.
6.
The relationship between DNA replication and chromosome structure   总被引:1,自引:0,他引:1  
Dutrillaux  B. 《Human genetics》1977,35(3):247-253
Summary The results obtained by acridine orange staining of chromosomes, after BrdU treatment, during one or two cell cycles, are described. The alterations of chromosome structure do not depend only on BrdU incorporation into DNA. Some other mechanisms are necessarily involved, and it is postulated that they are disturbances of protein-DNA association, occurring in G1 and in S- or G2-phase. The aspect of metaphase chromosomes then appears as the result of several metabolic steps, all occurring during interphase.Presented at the Fifth Meeting of the Cytogenetics Section of the Society for Anthropology and Human Genetics, Basel, Switzerland, June 17–19, 1976.  相似文献   

7.
8.
9.
The effects of surfaces on the physiology of bacteria adhering to surfaces or immobilized within biofilms are receiving more interest. A study of the effects of hydrophobic and hydrophilic substrata on the colonization behavior of a marine bacterium, SW5, revealed major differences in the morphology of SW5 on these surfaces. Using epifluorescence, scanning confocal laser, and on-line visualization (time-lapse video) microscopy, the organisms at hydrophobic surfaces were characterized by the formation of tightly packed biofilms, consisting of single and paired cells, whereas those at hydrophilic surfaces exhibited sparse colonization and the formation of chains more than 100 microns long, anchored at the surface by the terminal (colonizing) cell. The results are discussed in terms of the possible factors inducing the observed morphological differences and the significance of these differences in terms of biofilm structure and plasmid transfer when SW5 is the recipient organism.  相似文献   

10.
We propose that collectively localized nonlinear excitations (solitons) exist in DNA structure. These arise as a consequence of an intrinsic nonlinear ribose inversion instability that results in a modulated beta alternation in sugar puckering along the polymer backbone. In their bound state, soliton-antisoliton pairs contain beta premelted core regions capable of undergoing breathing motions that facilitate drug intercalation. We call such bound state structures--beta premeltons. The stability of a beta premelton is expected to reflect the collective properties of extended DNA regions and to be sensitive to temperature, pH, ionic strength and other thermodynamic factors. Its tendency to localize at specific nucleotide base sequences may serve to initiate site-specific DNA premelting and melting. We suggest that beta premeltons provide nucleation centers important for RNA polymerase-promoter recognition. Such nucleation centers could also correspond to nuclease hypersensitive sites.  相似文献   

11.
Higher plant nuclear genomes contain many families of dispersed repeats that change during evolution. Recent evidence from studies on genetically defined transposable elements raises the possibility that many of the dispersed repeats are remnants of such elements. Transposition of DNA has also occurred between mitochondria, chloroplasts and nuclei, a fact that underlines the major role played by DNA transposition in determining the structure of plant genomes.  相似文献   

12.
Qualitative and quantitative changes in mitochondrial DNA (mtDNA) have been shown to be common causes of inherited neurodegenerative and muscular diseases, and have also been implicated in ageing. These diseases can be caused by primary mtDNA mutations, or by defects in nuclear‐encoded mtDNA maintenance proteins that cause secondary mtDNA mutagenesis or instability. Furthermore, it has been proposed that mtDNA copy number affects cellular tolerance to environmental stress. However, the mechanisms that regulate mtDNA copy number and the tissue‐specific consequences of mtDNA mutations are largely unknown. As post‐mitotic tissues differ greatly from proliferating cultured cells in their need for mtDNA maintenance, and as most mitochondrial diseases affect post‐mitotic cell types, the mouse is an important model in which to study mtDNA defects. Here, we review recently developed mouse models, and their contribution to our knowledge of mtDNA maintenance and its role in disease.  相似文献   

13.
We address the question, related with the origin of the genetic code, of why are there three bases per codon in the translation to protein process. As a follow-up to our previous work (Aldana et al., 1998, Martínez-Mekler et al., 1999a,b), we approach this problem by considering the translocation properties of primitive molecular machines, which capture basic features of ribosomal/messenger RNA interactions, while operating under prebiotic conditions. Our model consists of a short one-dimensional chain of charged particles (rRNA antecedent) interacting with a polymer (mRNA antecedent) via electrostatic forces. The chain is subject to external forcing that causes it to move along the polymer which is fixed in a quasi-one-dimensional geometry. Our numerical and analytic studies of statistical properties of random chain/polymer potentials suggest that, under very general conditions, a dynamics is attained in which the chain moves along the polymer in steps of three monomers. By adjusting the model in order to consider present-day genetic sequences, we show that the above property is enhanced for coding regions. Intergenic sequences display a behavior closer to the random situation. We argue that this dynamical property could be one of the underlying causes for the three-base codon structure of the genetic code  相似文献   

14.
Theories based on simple principles have provided much insight into the common processes that underpin complex ecological systems. Although such theories (e.g. neutral theory, metabolic theories) often neglect specific ecological details, they compensate for this with their generality and broad applicability. We review several simple principles based on ‘thermodynamic extremization’ (the minimization or maximization of a thermodynamic quantity) and explore their application and relevance to ecology. Thermodynamic extremization principles predict that certain energetic quantities (e.g. entropy production) will tend towards maxima or minima within ecological systems, subject to local constraints (e.g. resource availability). These principles have a long history in ecology, but existing applications have had a theoretical focus and have made few quantitative predictions. We show that the majority of existing theories can be unified conceptually and mathematically, a result that should facilitate ecological applications of thermodynamic extremization principles. Recent developments in broader ecological research (e.g. metabolic theories) have allowed quantitative predictions of ecological patterns from thermodynamic extremization principles, and initial predictions have been supported by empirical data. We discuss how the application of extremization principles could be extended and demonstrate one possible extension, using an extremization principle to predict individual size distributions. A key focus in the application of thermodynamic extremization principles to mainstream ecological questions should be the generation of quantitative predictions and subsequent empirical validation.  相似文献   

15.
The speed and ease of human cytogenetic analysis has been greatly enhanced by the technique of fluorescence in situ hybridization (FISH). Non-radioactive fluorescently tagged complex DNA probes specific for individual chromosomes can be hybridized to conventionally obtained metaphase chromosome spreads. Several chromosomes may be painted concurrently by using combinations of different labeled probes. Surveys of chromosome breakage and rearrangement may be performed very quickly by avoiding the time consuming process of GTG-banding. The application of FISH to mouse cytogenetics would allow large scale molecular toxicology studies to be conducted on the effects of such environmental insults as potential carcinogens, mutagens and radiation. Progress has been hampered, however, as the Mus musculus karyotype consists of 40 acrocentric chromosomes of approximately the same size, making the recognition and separation of individual chromosomes very difficult. We now describe the successful production and application of chromosome-specific composite DNA probes for M. musculus chromosomes 2 and 8. Stable Robertsonian translocated chromosomes were isolated on a flow sorter and their DNA subsequently amplified by degenerate oligonucleotide primer (DOP) PCR. Small pools (300 copies) of each chromosome were denatured at 94° C then annealed with the primer at 30°C for 15 cycles. This was followed by 20 cycles at an annealing temperature of 62° C. Additional amplification was performed at an annealing temperature of 62° C. The chromosome-specific DNA was labeled with biotin 11-dUTP by nick translation and used for FISH. The usefulness of the technique for translocation detection is demonstrated by analyzing chromosome exchanges induced in mice irradiated with 137Cs rays.  相似文献   

16.
New actions of melatonin and their relevance to biometeorology   总被引:6,自引:0,他引:6  
 Melatonin is not only produced by the pineal gland, retina and parietal but also by various other tissues and cells from vertebrates, invertebrates, fungi, plants, multicellular algae and by unicells. In plants, many invertebrates and unicells, its concentration often exceeds that found in vertebrate blood by several orders of magnitude. The action of melatonin is highly pleiotropic. It involves firstly, direct effects, via specific binding sites in various peripheral tissues and cells of vertebrates, including immunomodulation; secondly, systemic influences on the cytoskeleton and nitric oxide formation, mediated by calmodulin; and thirdly, antioxidative protection, perhaps also in the context of photoprotection in plants and unicells. In some dinoflagellates, melatonin conveys temperature signals. On the basis of these comparisons, melatonin appears to mediate and modulate influences from several major environmental factors, such as the photoperiod, radiation intensity and temperature. Received: 18 March 1997 / Accepted: 16 July 1997  相似文献   

17.
Abstract. In imprinting, homologous chromosomes behave differently during development according to their parental origin. Typically, paternally derived chromosomes are preferentially inactivated or eliminated. Examples of such phenomena include inactivation of the mammalian X chromosome, inactivation or elimination of one haploid chromosome set in male coccids, and elimination of paternal X chromosomes in the fly Sciara . It has generally been thought that the paternal chromosomes bear an imprint leading to their inactivation or elimination. However, alteration of the parental origin of chromosomes, as in the study of parthenogenotes in mammals and coccids, shows that passage of chromosomes through a male germ cell or fertilization is not essential for inactivation or elimination. It appears that neither chromosome set is programmed to resist or undergo inactivation. Instead the two sets differ in relative sensitivity, and the question is whether the maternal set have an imprint for resistance, or the paternal set one for susceptibility. Very early in development of mammals both X chromosomes are active. This makes it simpler to envisage the maternal X bearing an imprint for resistance to inactivation, which persists through the early developmental period. Similar considerations also apply in coccids and Sciara . Thus, imprinting should be regarded as a phenomenon conferred on the maternal chromosomes in the oocyte. This permits simpler models for the mechanism of X-inactivation, and weakens the case for evolution of X-inactivation from an earlier form of inactivation during male gametogenesis. One may speculate whether imprinting affects timing of gene action in development.  相似文献   

18.
In imprinting, homologous chromosomes behave differently during development according to their parental origin. Typically, paternally derived chromosomes are preferentially inactivated or eliminated. Examples of such phenomena include inactivation of the mammalian X chromosome, inactivation or elimination of one haploid chromosome set in male coccids, and elimination of paternal X chromosomes in the fly Sciara. It has generally been thought that the paternal chromosomes bear an imprint leading to their inactivation or elimination. However, alteration of the parental origin of chromosomes, as in the study of parthenogenotes in mammals and coccids, shows that passage of chromosomes through a male germ cell or fertilization is not essential for inactivation or elimination. It appears that neither chromosome set is programmed to resist or undergo inactivation. Instead the two sets differ in relative sensitivity, and the question is whether the maternal set have an imprint for resistance, or the paternal set one for susceptibility. Very early in development of mammals both X chromosomes are active. This makes it simpler to envisage the maternal X bearing an imprint for resistance to inactivation, which persists through the early developmental period. Similar considerations also apply in coccids and Sciara. Thus, imprinting should be regarded as a phenomenon conferred on the maternal chromosomes in the oocyte. This permits simpler models for the mechanism of X-inactivation, and weakens the case for evolution of X-inactivation from an earlier form of inactivation during male gametogenesis. One may speculate whether imprinting affects timing of gene action in development.  相似文献   

19.
Triatoma infestans (Hemiptera: Reduviidae) from 22 Andean localities in Bolivia (n=968) and Peru (n=37) were analysed by multi-locus enzyme electrophoresis. Among 12 gene–enzyme systems analysed, GPD, 6GPD and PGM were polymorphic, ACON, G6PD, GPI, 1DH, LAP, MDH, ME, PEP-A and PEP-B were monomorphic. Allozyme frequencies were analysed in relation to geographical and climatic factors, and the presence or absence of Trypanosoma cruzi infection. At one locality (Vallegrande, Bolivia), the frequency of 6Pgd-1 was significantly higher in infected (41% of 85) than in uninfected (17% of 83) adult T. infestans , although no such difference was found among nymphs ( n = 347). From other localities, only insects infected with T. cruzi were subjected to isozyme analysis. Populations of T. infestans within villages showed panmixia, while genetic differentiation of T. infestans between villages was correlated with the distance between them. The genetic structure of T. infestans natural populations followed an 'isolation by distance' model, involving a series of founder effects followed by genetic drift, rather than adaptation in response to differential selection pressures. This conforms with circumstantial evidence that T. infestans spread, mainly in association with recent human migrations, from a source, probably in southern Bolivia. Isoenzyme characterization of populations of T. infestans could be used to infer sources of re-infestation during the surveillance phase of control programs.  相似文献   

20.
The distribution of chromatin within the mammalian nucleus is constrained by its organization into chromosome territories (CTs). However, recent studies have suggested that promiscuous intra- and inter-chromosomal interactions play fundamental roles in regulating chromatin function and so might define the spatial integrity of CTs. In order to test the extent of DNA mixing between CTs, DNA foci of individual CTs were labeled in living cells following incorporation of Alexa-488 and Cy-3 conjugated replication precursor analogues during consecutive cell cycles. Uniquely labeled chromatin domains, resolved following random mitotic segregation, were visualized as discrete structures with defined borders. At the level of resolution analysed, evidence for mixing of chromatin from adjacent domains was only apparent within the surface volumes where neighboring CTs touched. However, while less than 1% of the nuclear volume represented domains of inter-chromosomal mixing, the dynamic plasticity of DNA foci within individual CTs allows continual transformation of CT structure so that different domains of chromatin mixing evolve over time. Notably, chromatin mixing at the boundaries of adjacent CTs had little impact on the innate structural properties of DNA foci. However, when TSA was used to alter the extent of histone acetylation changes in chromatin correlated with increased chromatin mixing. We propose that DNA foci maintain a structural integrity that restricts widespread mixing of DNA and discuss how the potential to dynamically remodel genome organization might alter during cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号