首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A series of C-C biflavones was designed to investigate the relationship between structural array of different flavone-flavone subunit linkage and the inhibitory activity against phospholipase A2 (PLA2). Among six classes of C-C biflavones designed, four classes of C-C biflavones, which have flavone-flavone subunit linkages at A ring-A ring, A ring-B ring, B ring-B ring, and B ring-C ring, were synthesized. The synthetic biflavones exhibited somewhat different inhibitory activities against sPLA2-IIA. Among them, the biflavone a having a C-C 4'-4' linkage showed comparable inhibitory activity with that of the natural biflavonoid, ochnaflavone, and 7-fold stronger activity than that of amentoflavone. Further chemical modification is being carried out in order to obtain the chemically optimized biflavonoids.  相似文献   

2.
Venomous snakes have various types of phospholipase A(2) inhibitory proteins (PLIs) in their circulatory system to protect them from attack by their own phospholipase A(2)s (PLA(2)s). Here we show the first evidence for the existence of circulating PLI against secretory PLA(2)s (sPLA(2)s) in mammals. In mouse serum, we detected specific binding activities of group IB and X sPLA(2)s, which was in contrast with the absence of binding activities in serum prepared from mice deficient in PLA(2) receptor (PLA(2)R), a type I transmembrane glycoprotein related to the C-type animal lectin family. Western blot analysis after partial purification with group IB sPLA(2) affinity column confirmed the identity of serum sPLA(2)-binding protein as a soluble form of PLA(2)R (sPLA(2)R) that retained all of the extracellular domains of the membrane-bound receptor. Both purified sPLA(2)R and the recombinant soluble receptor having all of the extracellular portions blocked the biological functions of group X sPLA(2), including its potent enzymatic activity and its binding to the membrane-bound receptor. Protease inhibitor tests with PLA(2)R-overexpressing Chinese hamster ovary cells suggested that sPLA(2)R is produced by cleavage of the membrane-bound receptor by metalloproteinases. Thus, sPLA(2)R is the first example of circulating PLI that acts as an endogenous inhibitor for enzymatic activities and receptor-mediated functions of sPLA(2)s in mice.  相似文献   

3.
The functional site of 'phospholipase A2 inhibitor from python' (PIP) was predicted based on the hypothesis of proline brackets. Using different sources of secretory phospholipase A2 (sPLA2s) as enzyme, and [3H]arachidonate-labelled Escherichia coli as substrate, short synthetic peptides representing the proposed site were examined for their secretory phospholipase A2 (sPLA2) inhibitory activity. A decapeptide P-PB.III proved to be the most potent of the tested peptides in inhibiting sPLA2 enzymatic activity in vitro, and exhibited striking anti-inflammatory effects in vivo in a mouse paw oedema model. P-PB.III inhibited the enzymatic activity of class I, II and III PLA2s, including that of human synovial fluid from arthritis patients. When tested by ELISA, biotinylated P-PB.III interacted positively with various PLA2s, suggesting that the specific region of PIP corresponding to P-PB.III, is likely to be involved in the PLA2-PLI interaction. The effect of P-PB.III on the peritoneal inflammatory response after surgical trauma in rats was also examined. P-PB.III effectively reduced the extent of postsurgical peritoneal adhesions as compared to controls. sPLA2 levels at seventh postoperative day in the peritoneal tissue of P-PB.III-treated rats were also significantly reduced (P < 0.05) in comparison to those of the untreated controls. The present results shed additional insight on the essential structural elements for PLA2 binding, and may be useful as a basis for the design of novel therapeutic agents.  相似文献   

4.
Faure G 《Biochimie》2000,82(9-10):833-840
Endogenous proteins isolated from the serum of snakes have been found to be natural inhibitors displaying anti-hemorrhagic, anti-neurotoxic or anti-myotoxic activity. Some of these proteins inhibit phospholipase A(2) (PLA(2)) activity. We review in brief here the properties, structure and classification of these PLA(2) inhibitors (PLIs), focusing in particular on the mechanism of neutralization of the toxic PLA(2)s by anti-neurotoxic PLIs. We also discuss: 1) the protection provided by these molecules against endogenous snake venom PLA(2)s; 2) their specificity for neurotoxic snake venom PLA(2)s (beta-neurotoxins) and non-toxic mammalian secreted sPLA(2)s; and 3) the domains of the inhibitor and PLA(2) potentially involved in the binding of these two molecules. Purified and characterized natural inhibitors of PLA(2)s may be used to develop more effective therapeutic strategies for dealing with snake envenomation. Moreover, the structural and, in some cases, functional similarity of natural inhibitors to various mammalian proteins suggests that these mammalian proteins may themselves behave as PLA(2) inhibitors. Thus, these proteins may have important physiological functions in regulating the activities of neurotoxic PLA(2) and non-toxic sPLA(2).  相似文献   

5.
Neutrophils and differentiated PLB-985 cells contain various types of PLA(2)s including the 85 kDa cytosolic PLA(2) (cPLA(2)), Ca(2+)-independent PLA(2) (iPLA(2)) and secreted PLA(2)s (sPLA(2)s). The present study focuses on the behavior of sPLA(2)s in neutrophils and PLB cells and their relationship to cPLA(2)alpha. The results of the present research show that the two types of sPLA(2) present in neutrophils, sPLA(2)-V and sPLA(2)-X, which are located in the azurophil granules, are differentially affected by physiological stimuli. While sPLA(2)-V is secreted to the extacellular milieu, sPLA(2)-X is detected on the plasma membranes after stimulation. Stimulation of neutrophils with formyl-Met-Leu-Phe (fMLP), opsonized zymosan (OZ) or A23187 resulted in a different kinetics of sPLA(2) secretion as detected by its activity in the neutrophil supernatants. Neutrophil priming by inflammatory cytokines or LPS enhanced sPLA(2) activity detected in the supernatant after stimulation by fMLP. This increased activity was due to increased secretion of sPLA(2)-V to the supernatant and not to release of sPLA(2)-X. sPLA(2) in granulocyte-like PLB cells exhibit identical characteristics to neutrophil sPLA(2), with similar activity and optimal pH of 7.5. Granulocyte-like cPLA(2)alpha-deficient PLB cells serve as a good model to study whether sPLA(2) activity is regulated by cPLA(2)alpha. Secretion and activity of sPLA(2) were found to be similar in granulocyte-like PLB cells expressing or lacking cPLA(2)alpha, indicating that they are not under cPLA(2)alpha regulation.  相似文献   

6.
The sensitivity of different phospholipase A2 (PLA2)-active fractions eluted from cation-exchange chromatography to para-bromophenacylbromide (pBPB), Ca2+-EGTA, DTT, heat, and H2SO4 indicates that human cultured retinal pigment epithelial (hRPE) cells probably contain two different intracellular PLA2 enzymes. Control experiments using "back-and-forth" thin-layer chromatography confirmed that, in our assay conditions, the generation of free fatty acids originated solely from PLA2 activity. Together with immunoblot experiments where no cross-reactivity was observed between the hRPE cytosolic PLA2 enzymes and several antisera directed against secretory PLA2s (sPLA2s) and cytosolic PLA2 (cPLA2), these findings suggest that intracellular hRPE PLA2s are different from well-known sPLA2s, cPLA2, and Ca2+-independent PLA2s. We also report an additional hRPE-PLA2 enzyme that is secreted and that exhibits sensitivity to pBPB, Ca2+-EGTA, DTT, heat, and H2SO4, which is characteristic of sPLA2 enzymes. This approximately 22-kDa PLA2 cross-reacted weakly with an antiserum directed against porcine pancreatic group I sPLA2 but strongly with an antiserum directed against N-terminal residues 1-14 of human synovial group II sPLA2, suggesting that this extracellular enzyme is a member of the sPLA2 class of enzymes. We thus conclude that there are three distinct PLA2 enzymes in cultured hRPE cells, including two novel intracellular PLA2s and a 22-kDa secreted sPLA2 enzyme.  相似文献   

7.
Secretory phospholipase A(2) (sPLA(2)) plays important roles in cellular signaling and various biological events. In this study, we examined the biological effects and the potential signaling mechanism of purified sPLA(2) in MV1Lu cells. Three types of snake venom sPLA(2) were purified and their enzymatic activities were characterized by using various lipid substrates prepared from [3H]-myristate-labeled cells and by determining their effects on the induction of arachidonic acid (AA) release. The purified sPLA(2) induced apoptosis in Mv1Lu cells in a dose- and time-dependent manner, and was associated with a rapid increase in the intracellular ceramide level. Similar apoptotic effects were observed in Mv1Lu cells treated with exogenous ceramide analog, C(2)- and C(8)-ceramide. Moreover, treatment of cells with sphingomyelinase (SMase), which reduced the intracellular SM level, enhanced the apoptotic response to sPLA(2)s. sPLA(2)s also displayed an inhibitory effect on bradykinin-induced phospholipase D (PLD) activity, which can be imitated by exogenous ceramide. Our data indicate that sPLA(2) induces cell apoptosis via a mechanism involving increased ceramide generation.  相似文献   

8.
Interfacial enzymology of parvovirus phospholipases A2   总被引:1,自引:0,他引:1  
The capsid of parvoviruses proteins were recently shown to contain secreted phospholipase A(2) (sPLA(2))-like activity that is required during host cell entry. Parvoviral PLA(2) domains have little sequence identity with sPLA(2)s and lack disulfide bonds. In the present study, after bacterial expression and purification, the biochemical characterizations of these first PLA(2)s identified in viruses have been investigated, and a comparison has been made with other known PLA(2)s. The specific activities of three viral PLA(2)s differed by 3 orders of magnitude, with porcine parvovirus PLA(2) displaying a specific activity similar to that of the most active sPLA(2)s (e.g. human group IIA) and the human AAV2 and B19 parvoviral enzymes displaying approximately 10(3) lower specific activities (similar to human sPLA(2) groups IIE and XIIA). These differences were not caused by weaker Ca(2+) or interfacial binding. The specific activities of the viral PLA(2)s on zwitterionic or anionic phospholipid vesicles were comparable. The viral PLA(2)s did not display a preference for unsaturated versus saturated sn-2 fatty acyl chains and hydrolyzed all major classes of glycero-phospholipids except phosphatidylinositol. Incubation of mammalian cells with porcine parvovirus PLA(2) led to the release of arachidonic acid into the culture medium. Interestingly, among nine previously known sPLA(2) inhibitors, only a subset showed inhibition of the viral PLA(2)s and with weak potency, indicating that the active sites of these new enzymes are structurally distinct from those of sPLA(2)s. Based on these distinct enzymatic and structural properties, we propose to classify the parvovirus PLA(2)s within the PLA(2) superfamily as group XIII enzymes.  相似文献   

9.
10.
In a search for novel compounds with analgesic and anti-inflammatory activity, a series of regioisomeric 1-(3-pyridazinyl)-3-arylpyrazole (5a-f, 6a-f) and 1-(3-pyridazinyl)-5-arylpyrazole (7a-f, 8a-f) derivatives were synthesized. The structure of these regioisomers was confirmed by spectral techniques. The compounds were preliminarily screened at 8 microM concentration for their inhibitory activity against cyclooxygenase enzymes, COX-1 and COX-2, using a human whole blood test. The tested derivatives showed inhibitory activity for both enzymes and are worthy of further investigation for developing better leads.  相似文献   

11.
Secreted phospholipases A(2) (sPLA(2) s) are lipolytic enzymes present in organisms ranging from prokaryotes to eukaryotes but their origin and emergence are poorly understood. We identified and compared the conserved domains of 333 sPLA(2) s and proposed a model for their evolution. The conserved domains were grouped into seven categories according to the in silico annotated conserved domain collections of 'cd00618: PLA(2) _like' and 'pfam00068: Phospholip_A2_1'. PLA(2) s containing the conserved domain cd04706 (plant-specific PLA(2) ) are present in bacteria and plants. Metazoan PLA(2) s of the group (G) I/II/V/X PLA(2) collection exclusively contain the conserved domain cd00125. GIII PLA(2) s of both vertebrates and invertebrates contain the conserved domain cd04704 (bee venom-like PLA(2) ), and mammalian GIII PLA(2) s also contain the conserved domain cd04705 (similar to human GIII PLA(2) ). The sPLA(2) s of bacteria, fungi and marine invertebrates contain the conserved domain pfam09056 (prokaryotic PLA(2) ) that is the only conserved domain identified in fungal sPLA(2) s. Pfam06951 (GXII PLA(2) ) is present in bacteria and is widely distributed in eukaryotes. All conserved domains were present across mammalian sPLA(2) s, with the exception of cd04706 and pfam09056. Notably, no sPLA(2) s were found in Archaea. Phylogenetic analysis of sPLA(2) conserved domains reveals that two main clades, the cd- and the pfam-collection, exist, and that they have evolved via gene-duplication and gene-deletion events. These observations are consistent with the hypothesis that sPLA(2) s in eukaryotes shared common origins with two types of bacterial sPLA(2) s, and their persistence during evolution may be related to their role in phospholipid metabolism, which is fundamental for survival.  相似文献   

12.
A series of naturally occurring and synthetic biflavonoids was evaluated for inhibitory activity against Mycobacterium tuberculosis H37Rv (Mtb). Compounds 6, 24, and 25 demonstrated 96, 95, and 87% inhibition, respectively, at a screening concentration of 12.5 microg/mL. The type of linkage and the presence of methoxy- and nitro-substituents in biflavonoids may contribute to the observed inhibitory activity. The results of this study represent the discovery of biflavonoids as a potential new class of antituberculosis agent.  相似文献   

13.
Cytosolic phospholipase A2 (cPLA2) is believed to involve the regulation of essential cellular processes. Like other cell types, epidermal cPLA2 may participate in various metabolic processes including eicosanoid generation. In this investigation, we demonstrated the presence of cPLA2 in guinea pig epidermis. The epidermal cPLA2 is Ca2+-dependent, active at micromolar concentration of Ca2+ and resistant to disulfide-reducing agents. Furthermore, it is inhibited by methyl arachidonyl fluorophosphonate (MAFP), a selective inhibitor of cPLA2, while 12-epi-scalardial (a sPLA2 inhibitor) did not cause inhibition. A test of several flavonoids revealed that quercetin (flavonol) weakly inhibited cPLA2, while flavanone had negligible inhibitory activity. In contrast, amentoflavone and ginkgetin (biflavones) markedly inhibited cPLA2 activity in the epidermis. These results underscore that different flavonoids do vary in their capability to exert differential effects on arachidonate metabolism in the skin via modulation of epidermal cPLA2 activity.  相似文献   

14.
Phospholipase A(2) (PLA(2)) catalyses the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. So far, more than 30 enzymes that possess PLA(2) or related activity have been identified in mammals. About one third of these enzymes belong to the secreted PLA(2) (sPLA(2)) family, which comprises low molecular weight, Ca(2+) requiring, secreted enzymes with a His/Asp catalytic dyad. Individual sPLA(2)s display distinct localizations and enzymatic properties, suggesting their specialized biological roles. However, in contrast to intracellular PLA(2)s, whose roles in signal transduction and membrane homoeostasis have been well documented, the biological roles of sPLA(2)s in vivo have remained obscure until recently. Over the past decade, information fuelled by studies employing knockout and transgenic mice as well as specific inhibitors, in combination with lipidomics, has clarified when and where the different sPLA(2) isoforms are expressed, which isoforms are involved in what types of pathophysiology, and how they exhibit their specific functions. In this review, we highlight recent advances in PLA(2) research, focusing mainly on the physiological functions of sPLA(2)s and their modes of action on 'extracellular' phospholipid targets versus lipid mediator production.  相似文献   

15.
Although it has been proposed that arachidonate release by several secretory phospholipase A2 (sPLA2) isozymes is modulated by cytosolic PLA2 (cPLA2), the cellular component(s) that intermediates between these two signaling PLA2s remains unknown. Here we provide evidence that 12- or 15-lipoxygenase (12/15-LOX), which lies downstream of cPLA2, plays a pivotal role in cytokine-induced gene expression and function of sPLA2-IIA. The sPLA2-IIA expression and associated PGE2 generation induced by cytokines in rat fibroblastic 3Y1 cells were markedly attenuated by antioxidants that possess 12/15-LOX inhibitory activity. 3Y1 cells expressed 12/15-LOX endogenously, and forcible overexpression of 12/15-LOX in these cells greatly enhanced cytokine-induced expression of sPLA2-IIA, with a concomitant increase in delayed PG generation. Moreover, studies using 293 cells stably transfected with sPLA2-IIA revealed that stimulus-dependent hydrolysis of membrane phospholipids by sPLA2-IIA was enhanced by overexpression of 12/15-LOX. These results indicate that the product(s) generated by the cPLA2-12/15-LOX pathway following cell activation may play two roles: enhancement of sPLA2-IIA gene expression and membrane sensitization that leads to accelerated sPLA2-IIA-mediated hydrolysis.  相似文献   

16.
Given the potent hydrolyzing activity toward phosphatidylcholine, group X secretory phospholipase A(2) (sPLA(2)-X) elicits a marked release of arachidonic acid linked to the potent production of lipid mediators in various cell types. We have recently shown that sPLA(2)-X can also act as a ligand for mouse phospholipase A(2) receptor (PLA(2)R). Here, we found that sPLA(2)-X was internalized and degraded via binding to PLA(2)R associated with the diminished prostaglandin E(2) (PGE(2)) formation in PLA(2)R-expressing Chinese hamster ovary (CHO) cells compared to CHO cells. Indirect immunocytochemical analysis revealed that internalized sPLA(2)-X was co-localized with PLA(2)R in the punctate structures in PLA(2)R-expressing CHO cells. Moreover, in mouse osteoblastic MC3T3-E(1) cells that endogenously express the PLA(2)R, the internalized sPLA(2)-X was localized in lysosomes. These findings demonstrate that PLA(2)R acts as a clearance receptor for sPLA(2)-X to suppress its strong enzymatic activity.  相似文献   

17.
The current study examined the signal transduction steps involved in the selective release of arachidonic acid (AA) induced by the addition of secretory phospholipase A2 (sPLA2) isotypes to bone marrow-derived mast cells (BMMC). Overexpression of sPLA2 receptors caused a marked increase in AA and PGD2 release after stimulation of BMMC, implicating sPLA2 receptors in this process. The hypothesis that the release of AA by sPLA2 involved activation of cytosolic PLA2 (cPLA2) was next tested. Addition of group IB PLA2 to BMMC caused a transient increase in cPLA2 activity and translocation of this activity to membrane fractions. Western analyses revealed that these changes in cPLA2 were accompanied by a time-dependent gel shift of cPLA2 induced by phosphorylation of cPLA2 at various sites. A noncatalytic ligand of the sPLA2 receptor, p-amino-phenyl-alpha-D-mannopyranoside BSA, also induced an increase in cPLA2 activity in BMMC. sPLA2 receptor ligands induced the phosphorylation of p44/p42 mitogen-activated protein kinase. Additionally, an inhibitor of p44/p42 mitogen-activated protein kinase (PD98059) significantly inhibited sPLA2-induced cPLA2 activation and AA release. sPLA2 receptor ligands also increased Ras activation while an inhibitor of tyrosine phosphorylation (herbimycin) inhibited the increase in cPLA2 activation and AA release. Addition of partially purified sPLA2 from BMMC enhanced cPLA2 activity and AA release. Similarly, overexpression of mouse groups IIA or V PLA2 in BMMC induced an increase in AA release. These data suggest that sPLA2 mediate the selective release of AA by binding to cell surface receptors and then inducing signal transduction events that lead to cPLA2 activation.  相似文献   

18.
Novel compounds with significant medicinal properties have gained much interest in therapeutic approaches for treating various inflammatory disorders like arthritis, odema and snake bites and the post-envenom (impregnating with venom) consequences. Inflammation is caused by the increased concentration of secretory Phospholipases A(2) (sPLA(2)s) at the site of envenom. A novel compound Tris(2,4-di-tert-butylphenyl) phosphate (TDTBPP) was isolated from the leaves of Vitex negundo and the crystal structure was reported recently. The acute anti-inflammatory activity of TDTBPP was assessed by Carrageenan-induced rat paw odema method. TDTBPP reduced the raw paw odema volume significantly at the tested doses of 50 mg/kg and 70 mg/kg body weight. Molecular docking studies were carried out with the X-ray crystal structures of Daboia russelli pulchella's (Vipera russelli, Indian Russell's viper) venom sPLA(2) and Human non-pancreatic secretory PLA(2) (Hnps PLA(2)) as targets to illustrate the antiinflammatory and antidote activities of TDTBPP. Docking results showed hydrogen bond (H-bond) interaction with Lys69 residue lying in the anti-coagulant loop of D. russelli's venom PLA(2), which is essential in the catalytic activity of the enzyme and hydrophobic interactions with the residues at the binding site (His48, Asp49). Docking of TDTBPP with Hnps PLA(2) structure showed coordination with calcium ion directly as well as through the catalytically important water molecule (HOH1260) located at the binding site.  相似文献   

19.
Globoid cell leukodystrophy (Krabbe disease) is an inherited neurological disorder caused by the pathogenomic accumulation of psychosine (galactosylsphingosine), a substrate for the deficient enzyme galactocerebroside beta-galactosidase. This study underscores the mechanism of action of psychosine in the regulation of oligodendrocyte cell death via the generation of lysophosphatidylcholine (LPC) and arachidonic acid (AA) by the activation of secretory phospholipase A2 (sPLA2). There was a significant increase in the level of LPC, indicating a phospholipase A2 (PLA2)-dependent pathobiology, in the brains of Krabbe disease patients and those of twitcher mice, an animal model of Krabbe disease. In vitro studies of the treatment of primary oligodendrocytes and the oligodendrocyte MO3.13 cell line with psychosine also showed the generation of LPC and the release of AA in a dose- and time-dependent manner, indicating psychosine-induced activation of PLA2. Studies with various pharmacological inhibitors of cytosolic phospholipase A2 and sPLA2 and psychosine-mediated induction of sPLA2 enzymatic activity in media supernatant suggest that psychosine-induced release of AA and generation of LPC is mainly contributed by sPLA2. An inhibitor of sPLA2, 7,7-dimethyl eicosadienoic acid, completely attenuated the psychosine-mediated accumulation of LPC levels, release of AA, and generation of reactive oxygen species, and blocked oligodendroyte cell death, as evident from cell survival, DNA fragmentation, and caspase 3 activity assays. This study documents for the first time that psychosine-induced cell death is mediated via the sPLA2 signaling pathway and that inhibitors of sPLA2 may hold a therapeutic potential for protection against oligodendrocyte cell death and resulting demyelination in Krabbe disease.  相似文献   

20.
The bacterial tripeptide formyl-Met-Leu-Phe (fMLP) induces the secretion of enzyme(s) with phospholipase A(2) (PLA(2)) activity from human neutrophils. We show that circulating human neutrophils express groups V and X sPLA(2) (GV and GX sPLA(2)) mRNA and contain GV and GX sPLA(2) proteins, whereas GIB, GIIA, GIID, GIIE, GIIF, GIII, and GXII sPLA(2)s are undetectable. GV sPLA(2) is a component of both azurophilic and specific granules, whereas GX sPLA(2) is confined to azurophilic granules. Exposure to fMLP or opsonized zymosan results in the release of GV but not GX sPLA(2) and most, if not all, of the PLA(2) activity in the extracellular fluid of fMLP-stimulated neutrophils is due to GV sPLA(2). GV sPLA(2) does not contribute to fMLP-stimulated leukotriene B(4) production but may support the anti-bacterial properties of the neutrophil, because 10-100 ng per ml concentrations of this enzyme lead to Gram-negative bacterial membrane phospholipid hydrolysis in the presence of human serum. By use of a recently described and specific inhibitor of cytosolic PLA(2)-alpha (group IV PLA(2)alpha), we show that this enzyme produces virtually all of the arachidonic acid used for the biosynthesis of leukotriene B(4) in fMLP- and opsonized zymosan-stimulated neutrophils, the major eicosanoid produced by these pro-inflammatory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号