首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In tsBN2 cells, a temperature-sensitive (ts) mutant of the BHK21 cell line, with a ts-defect in its regulatory system for chromosome condensation, antigens that react with mitotic specific mouse monoclonal antibody MPM-2 were produced when premature chromosome condensation (PCC) was induced by a temperature shift. The polypeptides of antigens recognized by MPM-2 in tsBN2 cells with PCC were identical to those of antigens in mitotic cells. These antigens appeared concomitantly with chromosome condensation, which suggests that these mitotic-specific antigens may be related to chromosome condensation. As the production of mitotic-specific antigens was inhibited by W-7, a specific and potent antagonist of calmodulin, calmodulin may function in the mitotic phosphorylation of nonhistone protein.  相似文献   

2.
3.
4.
Premature chromosome condensation and cell cycle analysis.   总被引:3,自引:0,他引:3  
The application of the phenomenon of premature chromosome condensation for cell cycle analysis in HeLa and CHO cells has been examined. Random populations of HeLa and CHO cells pulse labelled with H3-TdR were separately fused with mitotic HeLa cells using U.V. inactivated Sendai virus. The resulting prematurely condensed chromosomes (PCC) were scored and classified into G1, S and G2-PCC on the basis of both morphological and autoradiographic data, The results of this study indicated that the G1, S and G2 phase cells are equally susceptible to virus-induced fusion with mitotic cells and subsequent induction into PCC. Hence the PCC method for cell cycle analysis is both practical and accurate. This study also revealed that the process of chromosome decondensation initiated during the telophase of mitosis continues throughout the G1 period reaching an ultimate state of decondensation by the end of G1, at which point the fusion of such cells with those in mitosis yield PCC with the most diffused morphology instead of the discrete single stranded structures characteristic of early G1-PCC. Thus, the decondensation of chromatin during G1 appears to be a prerequisite for the subsequent initiation of DNA synthesis.  相似文献   

5.
The phosphorylation of nonhistone chromatin proteins during development was studied in the sea urchin, Strongylocentrotus purpuratus. The rate of phosphorylation was found to be maximal during gastrula, slightly lower during prism and almost 70% lower in pluteus stage embryos. Analysis of the phosphorylated nonhistone chromatin proteins by SDS-acrylamide gel electrophoresis showed significant variations in the labeling pattern during different stages of development. A specific protein which is actively phosphorylated during gastrula and prism stages is nearly absent from the pluteus stage.  相似文献   

6.
7.
Nuclear DNA polymerases and the HeLa cell cycle.   总被引:17,自引:0,他引:17  
Purified nuclei of HeLa S3 cells contain two DNA-dependent DNA polymerases that have distinct physical and enzymatic properties. We have investigated the variations in their activity during the cell cycle of a synchronized culture. Cells were synchronized by a double thymidine block, harvested at various phases of the cycle, and the two DNA polymerases were purified partially by DEAE-cellulose and phosphocellulose chromatography. The activity of DNA polymerase I (low molecular weight, N-ethylmaleimide-insensitive) remains essentially constant throughout the cycle. The activity of DNA polymerase II (high molecular weight, N-ethylmaleimide-sensitive), however, increases during G1 to mid-S and declines, 7- to 10-fold between late-S and G2. Addition of cycloheximide (60 mug/ml) to cultures 12 hours after the release from thymidine block abolishes the rise in the activity of DNA polymerase II. Cycloheximide also reduced the activity of DNA polymerase I by 60%. Addition of hydroxyurea (1mM) at 1 hour after release has no effect on the activity of either enzyme. We conclude that in HeLa cells, DNA polymerase I and II are distinct enzymes, that DNA polymerase II probably functions in DNA replication and is probably induced in response to stimuli for DNA biosynthesis.  相似文献   

8.
Periodicity of DNA synthetic enzymes during the HeLa cell cycle   总被引:5,自引:0,他引:5  
  相似文献   

9.
对核质不同步分裂时染色体、DNA数量变化规律进行了补充,对染色体、DNA在细胞核中的数量变化进行了分析,并绘制曲线加以比较。  相似文献   

10.
Abundant cytoplasmic proteins pulse-labeled with [35S]methionine at specific times throughout the HeLa cell cycle were analyzed with two- dimensional gel electrophoresis. More than 300 proteins could be resolved in this way. The frequency of appearance of label in the most abundant 90 proteins, ranging from 4% to less than 0.1% of the total methionine incorporated, was determined at six time points in the cell cycle. 84 of these proteins were made as a similar proportion of the total at all times during the cell cycle. A nonmuscle actin protein (spot 1) identified by molecular weight and isoelectric point represented 2-4% of the total methionine incorporated at all the time points. Only six proteins were found which varied by greater than fourfold during cell division, four appearing to represent a greater proportion of the total synthesis during the period at or immediately surrounding M (spots 31b, 44, 53, and 70d). Two appear to represent a smaller percentage of total synthesis during the early (spot 78) or the total (spot 74) G2 period.  相似文献   

11.
Physarum polycephalum has been used as a model system to study the phosphorylation of ribosomal proteins during the cell cycle. The results showed that the phosphate content of S3, the major ribosomal phosphoprotein in this organism, was constant during all phases of the cell cycle. No additional ribosomal phosphoproteins were observed. These results differ significantly from those reported earlier by Rupp, R.G., Humphrey, R.M. and Shaeffer, J.R. (Biochim. Biophys. Acta (1976) 418, 81-92) and suggest that the use of thymidine or hydroxyurea to synchronize cell population may affect the phosphorylation of ribosomal proteins. The results are discussed in relation to protein synthesis and cAMP level during the cell cycle.  相似文献   

12.
Cell cycle variations in ADP-ribosylation of nuclear scaffold proteins were determined. Nuclei of synchronized cells were isolated and labeled with [32P]NAD before nuclear scaffolds were obtained by digestion of DNA with DNase I and extraction of proteins with 2M NaCl. Autoradiograms revealed the three groups of "lamins" and a species identified as poly (ADP-ribose) polymerase to be the primary ADP-ribosylated proteins. The patterns of modification of nuclear scaffold proteins displayed similar features through the cell cycle. Radioactivity in the lamins increased from 20% in early-S phase to 40% in G1 phase of the next cell cycle.  相似文献   

13.
14.
15.
The kinetics of acidic residual chromosomal protein synthesis and transport were studied throughout the cell cycle in HeLa S-3 cells synchronized by 2 mM thymidine block and selective detachment of mitotic cells. Pulse labeling the cells with leucine-3H for 2 min and then "chasing" the radioactive proteins for up to 3 hr showed that the amount of protein synthesized, transported, and retained in the acidic residual chromosomal protein fraction is greater immediately after mitosis and later in G1 than in the S or G2 phases of the cell cycle. During S, only 20–25% of the proteins synthesized and transported to the acidic residual chromosomal protein fraction are chased during the first 2 hr after pulse labeling, whereas up to 40% of the material entering the residual nuclear fraction in mitosis, G1, and G2 leaves during a 2 hr chase. Polyacrylamide gel electrophoretic profiles of these proteins, at various times after pulse labeling, reveal that the turnover of individual polypeptides within this fraction has kinetics of synthesis and turnover which are markedly different from one another and undergo stage-specific changes.  相似文献   

16.
17.
The degree of complexing between DNA and chromosomal proteins and the ability of poly adenosine diphosphate ribosylation (ADP-ribosylation) of nuclear proteins to release this template restriction and expose DNA primer site changes during the HeLa cell cycle. Primer site exposure by NAD and poly ADP(ribose) polymerase was assessed with intact nuclei by single deoxynucleotide incorporation into DNA in the presence of saturating bacterial DNA polymerase. The most marked in vitro enhancement of primer site exposure by ADP-ribosylation occurred in early G1 phase, where cellular template restriction was the greatest. Cytoplasmic DNA polymerase also had high activity in early G1 phase of the cell cycle. Streptozotocin reduces NAD pools in HeLa cells; a concomitant stimulation of nuclear poly ADP(ribose) polymerase activity is noted.  相似文献   

18.
A series of 6-anilinouracils, dGTP analogues which selectively inhibit specific bacterial DNA polymerases, were examined for their capacity to inhibit purified DNA polymerases from HeLa cells. The p-n-butyl derivative (BuAU) was found to inhibit DNA polymerase alpha with a Ki of approximately 60 microM. The inhibitory effect of BuAU was reversed specifically by dGTP and was observed only for DNA polymerase alpha; polymerases beta and lambda were not inhibited by drug at concentrations as high as 1 mM. BuAU also was inhibitory in vivo in HeLa cell culture; at 100 microM it reversibly inhibited cell division and selectively depressed DNA synthesis. The results of these studies indicate that BuAU is an inhibitor with considerable potential as a specific probe with which to dissect the structure of mammalian polymerase alpha and its putative role in cellular DNA replication.  相似文献   

19.
20.
The cell-free synthesis of histone-like polypeptides has been achieved using a selected class of small polyribosomes as the only particulate fraction. This synthesis is prevented if the deoxyribonucleic acid (DNA) inhibitor, cytosine arabinoside, is added to the cells prior to disruption, and it is not detected when the cytoplasm used is derived from postmitotic (G1) cells. When the 100,000 g supernate from pure metaphase populations was compared with that from S phase cells, the cell-free synthesis of histone-like polypeptides in the presence of S phase polyribosomes remained unchanged. These data suggest that, except for the histone messenger RNA-ribosome complex, the cytoplasmic factors requisite for histone synthesis are present throughout the cycle, and that the shut-off of this synthesis is not under translational control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号