首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D] has been shown to inhibit development of dextran sodium sulfate (DSS)-induced colitis in mice but can also cause hypercalcemia. The aim of this study was to evaluate whether β-glucuronides of vitamin D could deliver 1,25(OH)(2)D to the colon to ameliorate colitis while reducing the risk of hypercalcemia. Initial studies demonstrated that bacteria residing in the lower intestinal tract were capable of liberating 1,25(OH)(2)D from 1,25-dihydroxyvitamin D(3)-25-β-glucuronide [β-gluc-1,25(OH)(2)D]. We also determined that a much greater upregulation of the vitamin D-dependent 24-hydroxylase gene (Cyp24) was induced in the colon by treatment of mice with an oral dose of β-gluc-1,25(OH)(2)D than 1,25(OH)(2)D, demonstrating targeted delivery of 1,25(OH)(2)D to the colon. We then tested β-glucuronides of vitamin D in the mouse DSS colitis model in two studies. In mice receiving DSS dissolved in distilled water and treated with 1,25(OH)(2)D or β-gluc-1,25(OH)(2)D, severity of colitis was reduced. Combination of β-gluc-1,25(OH)(2)D with 25-hydroxyvitamin D(3)-25-β-glucuronide [β-gluc-25(OH)D] resulted in the greatest reduction of colitis lesions and symptoms in DSS-treated mice. Plasma calcium concentrations were lower in mice treated with β-gluc-1,25(OH)(2)D alone or in combination with β-gluc-25(OH)D than in mice treated with 1,25(OH)(2)D, which were hypercalcemic at the time of death. β-Glucuronides of vitamin D compounds can deliver 1,25(OH)(2)D to the lower intestine and can reduce symptoms and lesions of acute colitis in this model.  相似文献   

3.
Vitamin D is a principal regulator of calcium homeostasis. However, recent evidence has indicated that vitamin D can have numerous other physiological functions including inhibition of proliferation of a number of malignant cells including breast and prostate cancer cells and protection against certain immune mediated disorders including multiple sclerosis (MS). The geographic incidence of MS indicates an increase in MS with a decrease in sunlight exposure. Since vitamin D is produced in the skin by solar or UV irradiation and high serum levels of 25-hydroxyvitamin D (25(OH)D) have been reported to correlate with a reduced risk of MS, a protective role of vitamin D is suggested. Mechanisms whereby the active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) may act to mediate this protective effect are reviewed. Due to its immunosuppressive actions, it has been suggested that 1,25(OH)(2)D(3) may prevent the induction of MS.  相似文献   

4.
Calcium is required for many cellular processes including muscle contraction, nerve pulse transmission, stimulus secretion coupling and bone formation. The principal source of new calcium to meet these essential functions is from the diet. Intestinal absorption of calcium occurs by an active transcellular path and by a non-saturable paracellular path. The major factor influencing intestinal calcium absorption is vitamin D and more specifically the hormonally active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). This article emphasizes studies that have provided new insight related to the mechanisms involved in the intestinal actions of 1,25(OH)(2)D(3). The following are discussed: recent studies, including those using knock out mice, that suggest that 1,25(OH)(2)D(3) mediated calcium absorption is more complex than the traditional transcellular model; evidence for 1,25(OH)(2)D(3) mediated active transport of calcium by distal as well as proximal segments of the intestine; 1,25(OH)(2)D(3) regulation of paracellular calcium transport and the role of 1,25(OH)(2)D(3) in protection against mucosal injury.  相似文献   

5.
The recently discovered epithelial calcium channels ECaC1 and ECaC2 are thought to play an important role in active calcium absorption in the intestine and kidney. Vitamin D-responsive elements (VDRE) were detected in the promoter sequence of human ECaC1 and regulation of ECaC by the steroid hormone 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) has been postulated. In this study we describe the structure of two murine ECaCs genes, each consisting of 15 exons localized on chromosome 6. Murine ECaC2 expression was found in many target tissues of 1,25-(OH)(2)D(3), including skin and osteoblastic cells, while ECaC1 expression is confined to the kidney. By screening the murine promoter sequences, we detected a putative VDRE in ECaC1 and an estrogen response element in ECaC2. However, experiments in mice with a mutant, nonfunctioning vitamin D receptor showed that expression of ECaC1 in the kidney and of ECaC2 in duodenum is regulated by calcium levels, but not by 1,25-(OH)(2)D(3). Also, estrogen-deficient ovariectomized (OVX) mice and OVX mice supplemented with estradiol showed unchanged duodenal ECaC2 expression compared with control mice. We conclude that ECaC expression in the kidney and the intestine is regulated by extracellular calcium but not by vitamin D or estrogen in vivo in mice.  相似文献   

6.
The vitamin D endocrine system plays a central role in mineral ion homeostasis through the actions of the vitamin D hormone, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], on the intestine, bone, parathyroid gland, and kidney. The main function of 1,25(OH)(2)D(3) is to promote the dietary absorption of calcium and phosphate, but effects on bone, kidney and the parathyroids fine-tune the mineral levels. In addition to these classical actions, 1,25(OH)(2)D(3) exerts pleiotropic effects in a wide variety of target tissues and cell types, often in an autocrine/paracrine fashion. These biological activities of 1,25(OH)(2)D(3) have suggested a multitude of potential therapeutic applications of the vitamin D hormone for the treatment of hyperproliferative disorders (e.g. cancer and psoriasis), immune dysfunction (autoimmune diseases), and endocrine disorders (e.g. hyperparathyroidism). Unfortunately, the effective therapeutic doses required to treat these disorders can produce substantial hypercalcemia. This limitation of 1,25(OH)(2)D(3) therapy has spurred the development of vitamin D analogs that retain the therapeutically important properties of 1,25(OH)(2)D(3), but with reduced calcemic activity. Analogs with improved therapeutic indices are now available for treatment of psoriasis and secondary hyperparathyroidism in chronic kidney disease, and research on newer analogs for these indications continues. Other analogs are under development and in clinical trials for treatment of various types of cancer, autoimmune disorders, and many other diseases. Although many new analogs show tremendous promise in cell-based models, this article will limit it focus on the development of analogs currently in use and those that have demonstrated efficacy in animal models or in clinical trials.  相似文献   

7.
Microarray technology has been used to discover 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) induced gene expression changes in rat small intestine in vivo. Here, we report gene expression changes related to intestinal absorption or transport, the immune system and angiogenesis in response to 1,25-(OH)(2)D(3). Vitamin D deficient rats were intrajugularly given vehicle or vehicle containing 730 ng of 1,25-(OH)(2)D(3)/kg of body weight. Intestinal mRNA was harvested from duodenal mucosa at 15 min, 1, 3, and 6 h post-injection and studied by Affymetrix microarrays. Genes significantly affected by 1,25-(OH)(2)D(3) were confirmed by quantitative RT-PCR with remarkable agreement. The most strongly affected gene in intestine was CYP24 with 97-fold increase at 6 h post-1,25-(OH)(2)D(3) treatment. Intestinal calcium absorption genes: TRPV5, TRPV6, calbindin D(9k), and Ca(2+) dependent ATPase all were up-regulated in response to 1,25-(OH)(2)D(3), supporting the currently accepted mechanism of 1,25-(OH)(2)D(3) induced transcellular calcium transport. However, a 1,25-(OH)(2)D(3) suppression of several intra-/intercellular matrix modeling proteins such as sodium/potassium ATPase, claudin 3, aquaporin 8, cadherin 17, and RhoA suggests a vitamin D regulation of tight junction permeability and paracellular calcium transport. Several other genes related to the immune system and angiogenesis whose expression was changed in response to 1,25-(OH)(2)D(3) provided evidence for an immunomodulatory and anti-angiogenic role of 1,25-(OH)(2)D(3).  相似文献   

8.
Targeted deletion of genes encoding the 1,25-dihydroxyVitamin D [1,25(OH)(2)D]-synthesizing enzyme, 25 hydroxyVitamin D-1alpha-hydroxylase [1alpha(OH)ase or CYP27B1], and of the nuclear receptor for 1,25(OH)(2)D, the Vitamin D receptor (VDR), have provided useful mouse models of the inherited human diseases, Vitamin D-dependent rickets types I and II. We employed these models and double null mutants to examine the effects of calcium and of the 1,25(OH)(2)D/VDR system on skeletal and calcium homeostasis. Optimal dietary calcium absorption required both 1,25(OH)(2)D and the VDR. Skeletal mineralization was dependent on adequate ambient calcium but did not directly require the 1,25(OH)(2)D/VDR system. Parathyroid hormone (PTH) secretion was also modulated primarily by ambient serum calcium but the enlarged parathyroid glands which the mutants exhibited and the widened cartilaginous growth plates could only be normalized by the combination of calcium and 1,25(OH)(2)D, apparently independently of the VDR. Optimal osteoclastic bone resorption and osteoblastic bone formation both required an intact 1,25(OH)(2)D/VDR apparatus. The results indicate that calcium cannot entirely substitute for Vitamin D in skeletal and mineral homeostasis but that the two agents have discrete and overlapping functions.  相似文献   

9.
The active form of vitamin D, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is an endocrine hormone whose classic role is the maintenance of calcium homeostasis. It is well documented that 1,25(OH)(2)D(3) also has anti-tumor effects on a number of cancers and cancer cell lines including breast, colorectal, gastric, liver, ovarian, prostate, and non-melanoma skin cancers. Included in the anti-tumor activities of 1,25(OH)(2)D(3) are its ability to cause antiproliferation, prodifferentation and decrease angiogenesis. Furthermore, through regulation of the plaminogen activator (PA) system and a class of proteolytic enzymes called matrix metalloproteinases (MMPs), 1,25(OH)(2)D(3) reduces the invasive spread of tumor cells. Because of the calcemic limitations of using 1,25(OH)(2)D(3) as a therapy, we have tested the effects of a novel Gemini vitamin D analogue, Deuterated Gemini (DG), on mouse colorectal cancer. We demonstrated that DG is more potent in reducing tumor volume and mass, compared to control and 1,25(OH)(2)D(3). DG significantly prevented (100% reduction, p<0.05) the invasive spread of colorectal tumor cells into the surrounding muscle, and had no effect on serum calcium levels. Thus, DG acts as a selective vitamin D receptor modulator (SVDRM) by enhancing select anti-tumor characteristic 1,25(OH)(2)D(3) activities, without inducing hypercalcemia. Thus, DG shows promise in the development of colorectal cancer therapies.  相似文献   

10.
Nemere I  Campbell K 《Steroids》2000,65(8):451-457
The effect of vitamin D status on levels of the putative 1, 25(OH)(2)D(3) membrane receptor (pmVDR) was studied in chick intestine, kidney, and brain. Western analyses and assays for specific [(3)H]1,25(OH)(2)D(3) binding indicated that, in intestine, pmVDR levels were greatest in -D chicks relative to +1,25D and +D animals (P < 0.05). In kidney, protein levels and specific binding followed the order +D > +1,25D, -D. In brain, vitamin D status did not affect protein levels or specific binding levels. In tissue from normal chicks, both protein and specific binding followed the order of intestine > kidney > brain membranes. Intestinal cells were further evaluated for the effect of 1,25(OH)(2)D(3) on selected "rapid responses." Extrusion of (45)Ca in response to 130 pM 1, 25(OH)(2)D(3) in vitro was greater in cells from -D chicks than from +1,25D or normal birds. Analyses of signal transduction events revealed diminished hormone-induced intracellular calcium oscillations (as assessed by fura-2 fluorescence), and lack of steroid-enhanced protein kinase (PK) A activity in intestinal epithelial cells from -D chicks relative to +D chicks. PK C activation by 130 pM 1,25(OH)(2)D(3) was approximately twofold in cells from +D or -D chicks. The combined results indicate that vitamin D status differentially affects the pmVDR in intestine, kidney, and brain. In intestine, vitamin D deficiency differentially affects (45)Ca handling, intracellular calcium oscillations, PK A and PK C activities in response to 1,25(OH)(2)D(3).  相似文献   

11.
Intestinal absorption of dietary calcium is regulated by 1,25-dihydroxycholecalciferol (1,25(OH)(2)D(3)) in humans and in experimental animals but interspecies differences in responsiveness to 1,25(OH)(2)D(3) are found, possibly due to differences in the promoters of genes for intestinal calcium transport proteins or of the Vitamin D receptor (VDR). The epithelial calcium transporter, known as ECAC2 or CAT1, the product of the TRPV6 gene expressed in proximal intestinal enterocytes, is the first step in calcium absorption and studies in mice have shown that its expression is Vitamin D-dependent. In contrast in man, we showed that duodenal TRPV6 mRNA expression was independent of blood 1,25(OH)(2)D(3), although in Caco-2 cells, 1,25(OH)(2)D(3)-dependent changes have been demonstrated. We sought to explain these findings. A consensus Vitamin D response element in the mouse gene is absent in the human gene. We re-analysed our duodenal expression data according to a CDX2-site polymorphism in the VDR promoter. Mean TRPV6 expression was the same, but there was evidence of different responsiveness to 1,25(OH)(2)D(3). In the GG genotype group, but not the AG, duodenal TRPV6 expression increased with 1,25(OH)(2)D(3). We postulate that lower levels of expression of VDR in the GG group produce greater sensitivity to 1,25(OH)(2)D(3).  相似文献   

12.
New insights into the mechanisms of vitamin D action   总被引:17,自引:0,他引:17  
  相似文献   

13.
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] exerts anti-proliferative, differentiating and apoptotic effects on prostatic cells. These activities, in addition to epidemiologic findings that link Vitamin D to prostate cancer risk, support the use of 1,25(OH)(2)D(3) for prevention or therapy of prostate cancer. The molecular mechanisms by which 1,25(OH)(2)D(3) exerts antitumor effects on prostatic cells are not well-defined. In addition, there is heterogeneity among the responses of various prostate cell lines and primary cultures to 1,25(OH)(2)D(3) with regard to growth inhibition, differentiation and apoptosis. To understand the basis of these differential responses and to develop a better model of Vitamin D action in the prostate, we performed cDNA microarray analyses of primary cultures of normal and malignant human prostatic epithelial cells, treated with 50 nM of 1,25(OH)(2)D(3) for 6 and 24 h. CYP24 (25-hydroxyvitamin D(3)-24-hydroxylase) was the most highly upregulated gene. Significant and early upregulation of dual specificity phosphatase 10 (DUSP10), validated in five additional primary cultures, points to inhibition of members of the mitogen-activated protein kinase (MAPK) superfamily as a key event mediating activity of 1,25(OH)(2)D(3) in prostatic epithelial cells. The functions of other regulated genes suggest protection by 1,25(OH)(2)D(3) from oxidative stress. Overall, these results provide new insights into the molecular basis of antitumor activities of Vitamin D in prostate cells.  相似文献   

14.
The epidermis is the largest organ in the body. It is comprised primarily of keratinocytes which are arranged in layers that recapitulates their programmed life cycle. Proliferating keratinocytes are on the bottom-the stratum basale. As keratinocytes leave the stratum basale they begin to differentiate, culminating in the enucleated stratum corneum which has the major role of permeability barrier. Calcium and the active metabolite of vitamin D, 1,25(OH)(2)D(3), play important roles in this differentiation process. The epidermis has a gradient of calcium with lowest concentrations in the stratum basale, and highest concentrations in the stratum granulosum where proteins critical for barrier function are produced. Vitamin D is made in different layers of the epidermis, but 1,25(OH)(2)D(3) is made primarily in the stratum basale. Together calcium and 1,25(OH)(2)D(3) regulate the ordered differentiation process by the sequential turning on and off the genes producing the elements required for differentiation as well as activating those enzymes involved in differentiation. Animal models in which the sensing mechanism for calcium, the receptor for 1,25(OH)(2)D(3), or the enzyme producing 1,25(OH)(2)D(3) have been rendered inoperative demonstrate the importance of these mechanisms for the differentiation process, although each animal model has its own phenotype. This review will examine the mechanisms by which calcium and 1,25(OH)(2)D(3) interact to control epidermal differentiation.  相似文献   

15.
Vitamin D physiology   总被引:1,自引:0,他引:1  
  相似文献   

16.
The vitamin D hormone 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], the biologically active form of vitamin D, is essential for an intact mineral metabolism. Using gene targeting, we sought to generate vitamin D receptor (VDR) null mutant mice carrying the reporter gene lacZ driven by the endogenous VDR promoter. Here we show that our gene-targeted mutant mice express a VDR with an intact hormone binding domain, but lacking the first zinc finger necessary for DNA binding. Expression of the lacZ reporter gene was widely distributed during embryogenesis and postnatally. Strong lacZ expression was found in bones, cartilage, intestine, kidney, skin, brain, heart, and parathyroid glands. Homozygous mice are a phenocopy of mice totally lacking the VDR protein and showed growth retardation, rickets, secondary hyperparathyroidism, and alopecia. Feeding of a diet high in calcium, phosphorus, and lactose normalized blood calcium and serum PTH levels, but revealed a profound renal calcium leak in normocalcemic homozygous mutants. When mice were treated with pharmacological doses of vitamin D metabolites, responses in skin, bone, intestine, parathyroid glands, and kidney were absent in homozygous mice, indicating that the mutant receptor is nonfunctioning and that vitamin D signaling pathways other than those mediated through the classical nuclear receptor are of minor physiological importance. Furthermore, rapid, nongenomic responses to 1,25-(OH)(2)D(3) in osteoblasts were abrogated in homozygous mice, supporting the conclusion that the classical VDR mediates the nongenomic actions of 1,25-(OH)(2)D(3).  相似文献   

17.
Vitamin D, the sunshine vitamin, has been recognized for almost 100 years as being essential for bone health. Vitamin D provides an adequate amount of calcium and phosphorus for the normal development and mineralization of a healthy skeleton. Vitamin D made in the skin or ingested in the diet, however, is biologically inactive and requires obligate hydroxylations first in the liver to 25-hydroxyvitamin D, and then in the kidney to 1,25-dihydroxyvitamin D. 25-Hydroxyvitamin D is the major circulating form of vitamin D that is the best indicator of vitamin D status. 1,25-dihydroxyvitamin D is the biologically active form of vitamin D. This lipid-soluble hormone interacts with its specific nuclear receptor in the intestine and bone to regulate calcium metabolism. It is now recognized that the vitamin D receptor is also present in most tissues and cells in the body. 1,25-dihydroxyvitamin D, by interacting with its receptor in non-calcemic tissues, is able to elicit a wide variety of biologic responses. 1,25-dihydroxyvitamin D regulates cellular growth and influences the modulation of the immune system. There is compelling epidemiologic observations that suggest that living at higher latitudes is associated with increased risk of many common deadly cancers. Both prospective and retrospective studies help support the concept that it is vitamin D deficiency that is the driving force for increased risk of common cancers in people living at higher latitudes. Most tissues and cells not only have a vitamin D receptor, but also have the ability to make 1,25-dihydroxyvitamin D. It has been suggested that increasing vitamin D intake or sun exposure increases circulating concentrations of 25-hydroxyvitamin D, which in turn, is metabolized to 1,25-dihydroxyvitamin D(3) in prostate, colon, breast, etc. The local cellular production of 1,25-dihydroxyvitamin D acts in an autocrine fashion to regulate cell growth and decrease the risk of the cells becoming malignant. Therefore, measurement of 25-hydroxyvitamin D is important not only to monitor vitamin D status for bone health, but also for cancer prevention.  相似文献   

18.
Vitamin D target proteins: function and regulation   总被引:13,自引:0,他引:13  
  相似文献   

19.
The active form of Vitamin D, 1alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], has potent antiproliferative actions on various normal and malignant cells. Calcemic effects, however, hamper therapeutic application of 1,25-(OH)(2)D(3) in hyperproliferative diseases. Two 14-epi-analogs of 1,25-(OH)(2)D(3) namely 19-nor-14-epi-23-yne-1,25-(OH)(2)D(3) (TX522) and 19-nor-14,20-bisepi-23-yne-1,25-(OH)(2)D(3) (TX527), display reduced calcemic effects coupled to an (at least 10-fold) increased antiproliferative potency when compared with 1,25-(OH)(2)D(3). Altered cofactor recruitment by the Vitamin D receptor (VDR) might underlie the superagonism of these 14-epi-analogs. Therefore, this study aims to evaluate their effects at the level of VDR-coactivator interactions. Mammalian two-hybrid assays with VDR and the coactivators TIF2 and DRIP205 showed the 14-epi-analogs to be more potent inducers of VDR-coactivator interactions than 1,25-(OH)(2)D(3). TX522 and TX527 require 30- and 40-fold lower doses to obtain the VDR-DRIP205 interaction induced by 1,25-(OH)(2)D(3) at 10(-8)M. Evaluation of additional 1,25-(OH)(2)D(3)-analogs and their impact on VDR-coactivator interactions revealed a strong correlation between the antiproliferative potency of an analog and its ability to induce VDR-coactivator interactions. In conclusion, these data show that altered coactivator binding by the VDR is one possible explanation for the superagonistic action of the two 14-epi-analogs TX522 and TX527.  相似文献   

20.
The synthesis of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) is most strongly regulated by dietary calcium and the action of parathyroid hormone to increase 1alpha-hydroxylase (1alpha-OHase) and decrease 24-hydroxylase (24-OHase) in kidney proximal tubules. This study examines the hypothesis that 1,25-(OH)(2)D(3) synthesis, induced by dietary calcium restriction, is also the result of negative feedback regulation blockade. Rats fed a low calcium (0.02%, -Ca) diet and given daily oral doses of vitamin D (0, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 microg) remained hypocalcemic despite increasing levels of serum calcium in relation to the vitamin D dose. Plasma levels of 1,25-(OH)(2)D(3) rose to high levels (1200 pg/ml) at the high vitamin D dose levels. As expected, thyroparathyroidectomy caused a rapid fall in serum 1,25-(OH)(2)D(3). In rats fed a 0.47% calcium diet (+Ca) supplemented with vitamin D (4 microg/day), exogenous 1,25-(OH)(2)D(3) suppressed renal 1alpha-OHase and stimulated the 24-OHase. In rats fed the -Ca diet, vitamin D was unable to suppress the renal 1alpha-OHase or stimulate the renal 24-OHase. In contrast, vitamin D was fully able to stimulate intestinal 24-OHase. Intestinal vitamin D receptor (VDR) was present under all circumstances, while kidney VDR was absent under hypocalcemic conditions and present under normocalcemic conditions. It appears that tissue-specific down-regulation of VDR by hypocalcemia blocks the 1,25-(OH)(2)D(3) suppression of the 1alpha-OHase and upregulation of the 24-OHase in the kidney, causing a marked accumulation of 1,25-(OH)(2)D(3) in the plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号