首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The polyamines, spermidine and spermine, are abundant organic cations participating in many important cellular processes. We have previously shown that the rate-limiting enzyme of polyamine catabolism, spermidine/spermine N 1-acetyltransferase (SSAT), has an alternative mRNA splice variant (SSATX) which undergoes degradation via nonsense-mediated mRNA decay (NMD) pathway, and that the intracellular polyamine level regulates the ratio of the SSATX and SSAT splice variants. The aim of this study was to investigate the effect of SSATX level manipulation on SSAT activity in cell culture, and to examine the in vivo expression levels of SSATX and SSAT mRNA. Silencing SSATX expression with small interfering RNA led to increased SSAT activity. Furthermore, transfection of SSAT-deficient cells with mutated SSAT gene (which produced only trace amount of SSATX) yielded higher SSAT activity than transfection with natural SSAT gene (which produced both SSAT and SSATX). Blocking NMD in vivo by protein synthesis inhibitor cycloheximide resulted in accumulation of SSATX mRNA, and like in cell culture, the increase of SSATX mRNA was prevented by administration of polyamine analog N 1 ,N 11 -diethylnorspermine. Although SSATX/total SSAT mRNA ratio did not correlate with polyamine levels or SSAT activity between different tissues, increasing polyamine levels in a given tissue led to decreased SSATX/total SSAT mRNA ratio and vice versa. Taken together, the regulated unproductive splicing and translation of SSAT has a physiological relevance in modulating SSAT activity. However, in addition to polyamine level there seems to be additional factors regulating tissue-specific alternative splicing of SSAT.  相似文献   

2.
Ishii I  Ikeguchi Y  Mano H  Wada M  Pegg AE  Shirahata A 《Amino acids》2012,42(2-3):619-626
Polyamines spermidine and spermine are known to be required for mammalian cell proliferation and for embryonic development. Alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC) a limiting enzyme of polyamine biosynthesis, depleted the cellular polyamines and prevented triglyceride accumulation and differentiation in 3T3-L1 cells. In this study, to explore the function of polyamines in adipogenesis, we examined the effect of polyamine biosynthesis inhibitors on adipocyte differentiation and lipid accumulation of 3T3-L1 cells. The spermidine synthase inhibitor trans-4-methylcyclohexylamine (MCHA) increased spermine/spermidine ratios, whereas the spermine synthase inhibitor N-(3-aminopropyl)-cyclohexylamine (APCHA) decreased the ratios in the cells. MCHA was found to decrease lipid accumulation and GPDH activity during differentiation, while APCHA increased lipid accumulation and GPDH activity indicating the enhancement of differentiation. The polyamine-acetylating enzyme, spermidine/spermine N 1-acetyltransferase (SSAT) activity was increased within a few hours after stimulus for differentiation, and was found to be elevated by APCHA. In mature adipocytes APCHA decreased lipid accumulation while MCHA had the opposite effect. An acetylpolyamine oxidase and spermine oxidase inhibitor MDL72527 or an antioxidant N-acetylcysteine prevented the promoting effect of APCHA on adipogenesis. These results suggest that not only spermine/spermidine ratios but also polyamine catabolic enzyme activity may contribute to adipogenesis.  相似文献   

3.
We have been investigating the effects of natural polyamines and polyamine analogues on the survival and apoptosis of chondrocytes, which are cells critical for cartilage integrity. Treatment of human C‐28/I2 chondrocytes with N1,N11‐diethylnorspermine (DENSPM), a polyamine analogue with clinical relevance as an experimental anticancer agent, rapidly induced spermidine/spermine N1‐acetyltransferase (SSAT) and spermine oxidase (SMO), key enzymes of polyamine catabolism and down‐regulated ornithine decarboxylase, the first enzyme of polyamine biosynthesis, thus depleting all main polyamines within 24 h. The treatment with DENSPM did not provoke cell death and caspase activation when given alone for 24 h, but caused a caspase‐3 and ‐9 dependent apoptosis in chondrocytes further exposed to cycloheximide (CHX). In other cellular models, enhanced polyamine catabolism or polyamine depletion has been implicated as mechanisms involved in DENSPM‐related apoptosis. However, the simultaneous addition of DENSPM and CHX rapidly increased caspase activity in C‐28/I2 cells in the absence of SSAT and SMO induction or significant reduction of polyamine levels. Moreover, caspase activation induced by DENSPM plus CHX was not prevented by a N1‐acetylpolyamine oxidase (PAO)/SMO inhibitor, and depletion of all polyamines obtained by specific inhibitors of polyamine biosynthesis did not reproduce DENSPM effects in the presence of CHX. DENSPM/CHX‐induced apoptosis was associated with changes in the amount or activation of signalling kinases, Akt and MAPKs, and increased uptake of DENSPM. In conclusion, the results suggest that DENSPM can favour apoptosis in chondrocytes independently of its effects on polyamine metabolism and levels. J. Cell. Physiol. 219: 109–116, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
Purvalanol A is a specific CDK inhibitor which triggers apoptosis by causing cell cycle arrest in cancer cells. Although it has strong apoptotic potential, the mechanistic action of Purvalanol A on significant cell signaling targets has not been clarified yet. Polyamines are crucial metabolic regulators affected by CDK inhibition because of their role in cell cycle progress as well. In addition, malignant cells possess impaired polyamine homeostasis with high level of intracellular polyamines. Especially induction of polyamine catabolic enzymes spermidine/spermine N1-acetyltransferase (SSAT), polyamine oxidase (PAO) and spermine oxidase (SMO) induced toxic by-products in correlation with the induction of apoptosis in cancer cells. In this study, we showed that Purvalanol A induced apoptosis in caspase- dependent manner in MCF-7 ER(+) cells, while MDA-MB-231 (ER?) cells were less sensitive against drug. In addition Bcl-2 is a critical target for Purvalanol A, since Bcl-2 overexpressed cells are more resistant to Purvalanol A-mediated apoptosis. Furthermore, exposure of MCF-7 cells to Purvalanol A triggered SSAT and PAO upregulation and the presence of PAO/SMO inhibitor, MDL 72,527 prevented Purvalanol A-induced apoptosis.  相似文献   

5.
The induction of polyamine catabolism and its production of H2O2 have been implicated in the response to specific antitumor polyamine analogues. The original hypothesis was that analogue induction of the rate-limiting spermidine/spermine N1-acetyltransferase (SSAT) provided substrate for the peroxisomal acetylpolyamine oxidase (PAO), resulting in a decrease in polyamine pools through catabolism, oxidation, and excretion of acetylated polyamines and the production of toxic aldehydes and H2O2. However, the recent discovery of the inducible spermine oxidase SMO(PAOh1) suggested the possibility that the original hypothesis may be incomplete. To examine the role of the catabolic enzymes in the response of breast cancer cells to the polyamine analogue N1,N1-bis(ethyl)norspermine (BENSpm), a stable knockdown small interfering RNA strategy was used. BENSpm differentially induced SSAT and SMO(PAOh1) mRNA and activity in several breast cancer cell lines, whereas no N1-acetylpolyamine oxidase PAO mRNA or activity was detected. BENSpm treatment inhibited cell growth, decreased intracellular polyamine levels, and decreased ornithine decarboxylase activity in all cell lines examined. The stable knockdown of either SSAT or SMO(PAOh1) reduced the sensitivity of MDA-MB-231 cells to BENSpm, whereas double knockdown MDA-MB-231 cells were almost entirely resistant to the growth inhibitory effects of the analogue. Furthermore, the H2O2 produced through BENSpm-induced polyamine catabolism was found to be derived exclusively from SMO(PAOh1) activity and not through PAO activity on acetylated polyamines. These data suggested that SSAT and SMO(PAOh1) activities are the major mediators of the cellular response of breast tumor cells to BENSpm and that PAO plays little or no role in this response.  相似文献   

6.
7.
The retinoblastoma protein (pRb) pathway is frequently altered in breast cancer cells. pRb is involved in the regulation of cell proliferation and cell death. The breast cancer cell line L56Br-C1 does not express pRb and is extremely sensitive to treatment with the polyamine analogue N 1,N 11-diethylnorspermine (DENSPM) which causes apoptosis. Polyamines are essential for the regulation of cell proliferation, cell differentiation and cell death. DENSPM depletes cells of polyamines, e.g., by inducing the activity of the polyamine catabolic enzyme spermidine/spermine N 1-acetyltransferase (SSAT). In this study, L56Br-C1 cells were transfected with human pRb–cDNA. Overexpression of pRb inhibited DENSPM-induced cell death and DENSPM-induced SSAT activity. This suggests that the pRb protein level is a promising marker for polyamine depletion sensitivity and that there is a connection between pRb and the regulation of SSAT activity. We also show that SSAT protein levels and SSAT activity do not always correlate, suggesting that there is an unknown regulation of SSAT.  相似文献   

8.
Many biological processes result from the coupling of metabolic pathways. Considering this, proliferation depends on adequate iron and polyamines, and although iron-depletion impairs proliferation, the metabolic link between iron and polyamine metabolism has never been thoroughly investigated. This is important to decipher, as many disease states demonstrate co-dysregulation of iron and polyamine metabolism. Herein, for the first time, we demonstrate that cellular iron levels robustly regulate 13 polyamine pathway proteins. Seven of these were regulated in a conserved manner by iron-depletion across different cell-types, with four proteins being down-regulated (i.e., acireductone dioxygenase 1 [ADI1], methionine adenosyltransferase 2α [MAT2α], Antizyme and polyamine oxidase [PAOX]) and three proteins being up-regulated (i.e., S-adenosyl methionine decarboxylase [AMD1], Antizyme inhibitor 1 [AZIN1] and spermidine/spermine-N1-acetyltransferase 1 [SAT1]). Depletion of iron also markedly decreased polyamine pools (i.e., spermidine and/or spermine, but not putrescine). Accordingly, iron-depletion also decreased S-adenosylmethionine that is essential for spermidine/spermine biosynthesis. Iron-depletion additionally reduced 3H-spermidine uptake in direct agreement with the lowered levels of the polyamine importer, SLC22A16. Regarding mechanism, the “reprogramming” of polyamine metabolism by iron-depletion is consistent with the down-regulation of ADI1 and MAT2α, and the up-regulation of SAT1. Moreover, changes in ADI1 (biosynthetic) and SAT1 (catabolic) partially depended on the iron-regulated changes in c-Myc and/or p53. The ability of iron chelators to inhibit proliferation was rescuable by putrescine and spermidine, and under some conditions by spermine. Collectively, iron and polyamine metabolism are intimately coupled, which has significant ramifications for understanding the integrated role of iron and polyamine metabolism in proliferation.  相似文献   

9.
With the recent discovery of the polyamine catabolic enzyme spermine oxidase (SMO/PAOh1), the apparent complexity of the polyamine metabolic pathway has increased considerably. Alone or in combination with the two other known members of human polyamine catabolism, spermidine/spermine N(1)-acetyltransferase, and N(1)-acetylpolyamine oxidase (PAO), SMO/PAOh1 expression has the potential to alter polyamine homeostasis in response to normal cellular signals, drug treatment and environmental and/or cellular stressors. The activity of the oxidases producing toxic aldehydes and the reactive oxygen species (ROS) H(2)O(2), suggest a mechanism by which these oxidases can be exploited as an antineoplastic drug target. However, inappropriate activation of the pathways may also lead to pathological outcomes, including DNA damage that can lead to cellular transformation. The most recent data suggest that the two polyamine catabolic pathways exhibit distinct properties and understanding these properties should aid in their exploitation for therapeutic and/or chemopreventive strategies.  相似文献   

10.
Recent studies suggest that overexpression of the polyamine-acetylating enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) significantly increases metabolic flux through the polyamine pathway. The concept derives from the observation that SSAT-induced acetylation of polyamines gives rise to a compensatory increase in biosynthesis and presumably to increased flow through the pathway. Despite the strength of this deduction, the existence of heightened polyamine flux has not yet been experimentally demonstrated. Here, we use the artificial polyamine precursor 4-fluoro-ornithine to measure polyamine flux by tracking fluorine unit permeation of polyamine pools in human prostate carcinoma LNCaP cells. Conditional overexpression of SSAT was accompanied by a massive increase in intracellular and extracellular acetylated spermidine and by a 6-20-fold increase in biosynthetic enzyme activities. In the presence of 300 microM 4-fluoro-ornithine, SSAT overexpression led to the sequential appearance of fluorinated putrescine, spermidine, acetylated spermidine, and spermine. As fluorinated polyamines increased, endogenous polyamines decreased, so that the total polyamine pool size remained relatively constant. At 24 h, 56% of the spermine pool in the induced SSAT cells was fluorine-labeled compared with only 12% in uninduced cells. Thus, SSAT induction increased metabolic flux by approximately 5-fold. Flux could be interrupted by inhibition of polyamine biosynthesis but not by inhibition of polyamine oxidation. Overall, the findings are consistent with a paradigm whereby flux is initiated by SSAT acetylation of spermine and particularly spermidine followed by a marked increase in key biosynthetic enzymes. The latter sustains the flux cycle by providing a constant supply of polyamines for subsequent acetylation by SSAT. The broader metabolic implications of this futile metabolic cycling are discussed in detail.  相似文献   

11.
12.
Treatment with thioacetamide (150 mg/kg)_ was used to enhance polyamine metabolism in rat liver. The increased uptake and catabolism of [14C]spermine and the changes of putrescine, spermidine and spermine concentrations indicated enhanced polyamine turnover rates. The increase of hepatic putrescine concentration was accompanied by an increase of monoacetylputrescine and N1-monoacetylspermidine concentration. In control animals, the latter compound was below detection levels. Thioacetamide treatment also enhanced putrescine excretion, which again was concomitant with an increased excretion of N1-acetylspermidine.The close time-dependent correlation between induced putrescine formation and enhanced formation of N1-acetylsperimidine at a time when liver spermidine and spermine concentrations are not changed, favors the notion that acetylation is an essential step in polyamine degradation and elimination. The increase of polyamine oxidase and decrease of acetylpolyamine deacetylase activities in the liver of thioacetamide-treated rats is in line with an increased polyamine turnover, but these enzymes. although essential, are not rate-limiting in the catabolic reactions.  相似文献   

13.
Polyamine metabolism is intimately linked to the physiological state of the cell. Low polyamines levels promote growth cessation, while increased concentrations are often associated with rapid proliferation or cancer. Delicately balanced biosynthesis, catabolism, uptake and excretion are very important for maintaining the intracellular polyamine homeostasis, and deregulated polyamine metabolism is associated with imbalanced metabolic red/ox state. Although many cellular targets of polyamines have been described, the precise molecular mechanisms in these interactions are largely unknown. Polyamines are readily interconvertible which complicate studies on the functions of the individual polyamines. Thus, non-metabolizable polyamine analogues, like carbon-methylated analogues, are needed to circumvent that problem. This review focuses on methylated putrescine, spermidine and spermine analogues in which at least one hydrogen atom attached to polyamine carbon backbone has been replaced by a methyl group. These analogues allow the regulation of both metabolic and catabolic fates of the parent molecule. Substituting the natural polyamines with methylated analogue(s) offers means to study either the functions of an individual polyamine or the effects of altered polyamine metabolism on cell physiology. In general, gem-dimethylated analogues are considered to be non-metabolizable by polyamine catabolizing enzymes spermidine/spermine-N 1-acetyltransferase and acetylpolyamine oxidase and they support short-term cellular proliferation in many experimental models. Monomethylation renders the analogues chiral, offering some advantage over gem-dimethylated analogues in the specific regulation of polyamine metabolism. Thus, methylated polyamine analogues are practical tools to meet existing biological challenges in solving the physiological functions of polyamines.  相似文献   

14.
Biogenic amines spermine (Spm) and spermidine (Spd) are essential for cell growth. Polyamine analogs are widely used to investigate the enzymes of polyamine metabolism and the functions of spermine and spermidine in vitro and in vivo. It was demonstrated recently that α-methylated derivatives of Spm and Spd are able to fulfill the key cellular functions of polyamines, moreover, in some cases, the effects of (R) and (S) isomers were actually different. Using these α-methylated analogs of Spm and Spd, it turned possible to prevent the development of acute pancreatitis in SSAT-transgenic rats with controllable expression of the Spm/Spd N1-acetyltransferase gene. The analogs made it possible to reveal dormant stereospecificity of polyamine oxidase, Spm oxidase, and deoxyhypusine synthase. An original approach was suggested to regulate the stereospecificity of polyamine oxidase. Depletion of the intracellular polyamine pool was found to have both hypusine-related consequences and consequences unrelated to posttranslational modification of the eukaryotic translation initiation factor eIF5A. Possible applications of a new family of C-methylated polyamine analogs for the investigation and regulation of polyamine metabolism in vitro and in vivo are discussed.  相似文献   

15.
16.
Properties of purified recombinant human polyamine oxidase,PAOh1/SMO   总被引:4,自引:0,他引:4  
The discovery of an inducible oxidase whose apparent substrate preference is spermine indicates that polyamine catabolism is more complex than that originally proposed. To facilitate the study of this enzyme, the purification and characterization of the recombinant human PAOh1/SMO polyamine oxidase are reported. Purified PAOh1/SMO oxidizes both spermine (K(m)=1.6 microM) and N(1)-acetylspermine (K(m)=51 microM), but does not oxidize spermidine. The purified human enzyme also does not oxidize eight representative antitumor polyamine analogues; however, specific oligamine analogues were found to be potent inhibitors of the oxidation of spermine by PAOh1/SMO. The results of these studies are consistent with the hypothesis that PAOh1/SMO represents a new addition to the polyamine metabolic pathway that may represent a new target for antineoplastic drug development.  相似文献   

17.
Spermine oxidase (SMO) was discovered much more recently than other enzymes involved in polyamine metabolism; this review summarizes 10?years of researches on this enzyme. Spermine oxidase (SMO) is a FAD-dependent enzyme that specifically oxidizes spermine (Spm) and plays a dominant role in the highly regulated mammalian polyamines catabolism. SMO participates in drug response, apoptosis, response to stressful stimuli and etiology of several pathological conditions, including cancer. SMO is a highly inducible enzyme, its deregulation can alter polyamine homeostasis, and dysregulation of polyamine catabolism is often associated with several disease states. The oxidative products of SMO activity are spermidine, and the reactive oxygen species H2O2 and the aldehyde 3-aminopropanal each with the potential to produce cellular damages and pathologies. The SMO substrate Spm is a tetramine that plays mandatory roles in several cell functions, such as DNA synthesis, cellular proliferation, modulation of ion channels function, cellular signaling, nitric oxide synthesis and inhibition of immune responses. The goal of this review is to cover the main biochemical, cellular and physiological processes in which SMO is involved.  相似文献   

18.
The superinduction of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT) has been implicated in the cell type-specific cytotoxic activity of some polyamine analogues. We now report that one polyamine analogue, 1, 12-dimethylspermine (DMSpm), produces a large induction of SSAT with no significant effects on growth in the human large cell lung carcinoma line, NCI H157. This cell line has been demonstrated to respond to other analogues with SSAT superinduction and cell death. Treatment of the lung cancer cell line with DMSpm produces a rapid increase in SSAT activity and a near complete depletion of the natural polyamines. Additionally, DMSpm supports cell growth in cells which have been depleted of their natural polyamines by the ornithine decarboxylase inhibitor, 2-difluoromethylornithine. The current results suggest that significant induction of SSAT can occur in the absence of cytotoxicity when the inducing polyamine analogue can support growth and that increased SSAT activity alone is not sufficient for cytotoxicity to occur. © 1995 Wiley-Liss Inc.  相似文献   

19.
20.
The biogenic polyamines spermine, spermidine, and their precursor putrescine are present in micro-to-millimolar concentrations in all cell types and are vitally important for their normal growth. High intracellular content of spermine and spermidine determines the multiplicity of the cellular functions of the polyamines. Many of these functions are not well characterized at the molecular level, ensuring the ongoing development of this field of biochemistry. Tumor cells have elevated polyamine level if compared with normal cells, and this greatly stimulates the search for new opportunities to deplete the intracellular pool of spermine and spermidine resulting in decrease in cell growth and even cell death. O-Substituted hydroxylamines occupy their own place among chemical regulators of the activity of the enzymes of polyamine metabolism. Varying the structure of the alkyl substituent made it possible to obtain within one class of chemical compounds highly effective inhibitors and regulators of the activity of all the enzymes of putrescine, spermine and spermidine metabolism (with the exception of FAD-dependent spermine oxidase and acetylpolyamine oxidase), effectors of the polyamine transport system, and even actively transported in cells “proinhibitor” of ornithine decarboxylase. Some principles for the design of specific inhibitors of these enzymes as well as the peculiarities of cellular effects of corresponding O-substituted hydroxylamines are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号