首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bovine carbonic anhydrase shows an intrinsic fluorescence which results from tryptophans located in different microenvironments. It is possible to attribute the whole fluorescence to at least two types of tryptophan.This fluorescence is differently affected by the binding of different metals. In fact while Zn2+ causes an increase of the fluorescence yield, the binding of Co2+, Cu2+ and Hg2+ is followed by a quenching of the fluorescence. The quenching is about 40% for the cobalt, 80% for the copper and 60% for the mercury derivative. The binding of Cu2+ and Hg2+ induces also a change in the shape of the fluorescence emission spectrum. This fact suggests a different influence of the metals on the various types of tryptophan.The fluorescence quenching induced by iodide which can bind to the metal and act as a fluorescence perturbing agent is also indicative of the presence of different tryptophans.  相似文献   

2.
Mercuric ion resistance in bacteria requires transport of mercuric ions (Hg2+) into the cytoplasmic compartment where they are reduced to the less toxic metallic mercury (Hg0) by mercuric reductase (MR). The long-established model for the resistance mechanism predicts interactions between the inner membrane mercuric ion transporter, MerT, and the N-terminal domain of cytoplasmic MR, but attempts to demonstrate this interaction have thus far been unsuccessful. A recently developed bacterial two-hybrid protein interaction detection system was used to show that the N-terminal region of MR interacts with the cytoplasmic face of MerT. We also show that the cysteine residues on the cytoplasmic face of the MerT protein are required for maximal mercuric ion transport but not for the interaction with mercuric reductase.  相似文献   

3.
The interaction of four fluorescent compounds containing thiophene and benzoxazole moieties combined with an alanine residue with alkaline, alkaline-earth, transition and post-transition metal ions was explored. The highly fluorescent heterocyclic alanine derivatives are strongly quenched in the solid state after complexation with the paramagnetic metal ions Cu2+ and Ni2+, and with the diamagnetic Hg2+. Absorption and steady-state fluorescence titrations reveal a selective interaction with Cu2+, Ni2+ and Hg2+. In all cases the formation of mononuclear or dinuclear metal complexes in solid state and in solution are postulated. DFT calculations on the mercury(II) complexes confirm the formation of dinuclear species. Our results suggest that one metal ion is coordinated by the chelate group formed by the amine and the protonated carboxylic groups present in the amino acid residue while a second metal ion is directly linked to the chromophore. As parent compound, L4 shows no interaction with Cu2+ and Ni2+ salts. However, the interaction with Hg2+ induces a strong quenching and a red shift of the fluorescence emission.  相似文献   

4.
The interactions between Hg2+, Ce3+, and the mixuure of Ce3+ and Hg2+, and DNA from fish intestine in vitro were investigated by using absorption spectrum and fluorescence emission spectrum. The ultraviolet absorption spectra indicated that the addition of Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ to DNA generated an obviously hypochromic effect. Meanwhile, the peak of DNA at 205.2 nm blue-shifted and at 258.2 nm red-shifted. The size of the hypochromic effect and the peak shift of DNA by metal ion treatments was Hg2+>Hg2++Ce3+>Ce3+. The fluorescence emission spectra showed that with the addition of Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ the emission peak at about 416.2 nm of DNA did not obviously change, but the intensity reduced gradually and the sequence was Hg2+>Hg2++Ce2+>Ce3+. Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ had 1.12, 0.19, and 0.41 binding sites to DNA, respectively; the fluorescence quenching of DNA caused by the metal ions all attributed to static quenching. The binding constants (K A ) of binding siees were 8.98×104 L/mol and 1.02×104 L/mol, 5.12×104 L/mol and 1.10×103 L/mol, 6.66×104 L/mol and 2.36×103 L/mol, respectively. The results showed that Ce3+ could relieve the destruction of Hg2+ on the DNA structure.  相似文献   

5.
The conformation of native pertussis toxin has been investigated by secondary structure prediction and by circular dichroism, fluorescence and second-derivative ultraviolet absorption spectroscopy. The far-ultraviolet circular dichroic spectrum is characteristic of a protein of high beta-sheet and low alpha-helix content. This is also shown by an analysis of the circular dichroic spectrum with the Contin programme which indicates that the toxin possesses 53% beta-sheet, 10% alpha-helix and 37% beta-turn/loop secondary structure. Second-derivative ultraviolet absorption spectroscopy suggests that 34 tyrosine residues are solvent-exposed and quenching of tryptophan fluorescence emission has shown that 4 tryptophan residues are accessible to iodide ions. One of these tryptophans appears to be in close proximity to a positively charged side-chain, since only 3 tryptophans are accessible to caesium ion fluorescence quenching. When excited at 280 nm, the emission spectrum contains a significant contribution from tyrosine fluorescence, which may be a consequence of the high proportion (55%) of surface-exposed tyrosines. No changes in the circular dichroic spectra of the toxin were found in the presence of the substrate NAD. However, NAD did quench both tyrosine and tryptophan fluorescence emission but did not change the shape of the emission spectrum, or the accessibility of the tryptophans to either the ionic fluorescence quenchers or the neutral quencher acrylamide.  相似文献   

6.
To develop conducting organic polymers (COPs) as luminescent sensors for determination of toxic heavy metals, a new benzene sulfonic acid‐doped polypyrrole (PPy‐BSA) thin film was electrochemically prepared by cyclic voltammetry (CV) on flexible indium tin oxide (ITO) electrode in aqueous solution. PPy‐BSA film was characterized by FTIR spectrometry, X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The optical properties of PPy‐BSA were investigated by ultraviolet (UV)‐visible absorption and fluorescence spectrometry in dimethylsulfoxide (DMSO) diluted solutions. PPy‐BSA fluorescence spectra were strongly quenched upon increasing copper(II) ion (Cu2+) and lead(II) ion (Pb2+) concentrations in aqueous medium, and linear Stern–Volmer relationships were obtained, which indicated the existence of a main dynamic fluorescence quenching mechanism. BSA‐PPy sensor showed a high sensitivity for detection of both metallic ions, Cu2+ and Pb2+, with very low limit of detection values of 3.1 and 18.0 nM, respectively. The proposed quenching‐fluorimetric sensor might be applied to the determination of traces of toxic heavy metallic ions in water samples.  相似文献   

7.
By using the method of low-temperature crystallization, CsPbBr3 perovskite nanocrystals (PNCs) coated with trifluoroacetyl lysine (Tfa-Lys) and oleamine (Olam) were synthesized in aqueous solution. The structure of the CsPbBr3 PNCs was characterized by many methods, such as ultraviolet (UV)-visible absorption spectrophotometer, fluorescence spectrophotometer, transmission electron microscopy (TEM), and X-ray diffraction (XRD) pattern. The fluorescence emission of the CsPbBr3 PNCs is stable in water for about 1 day at room temperature. It was also found that the fluorescence of the PNCs could be obviously and selectively quenched after the addition of mercury ion (Hg2+), allowing a visual detection of Hg2+ by the naked eye under UV light illumination. The fluorescence quenching rate (I0/I) has a good linear relationship with the addition of Hg2+ in the concentration range 0.075 to 1.5 mg/L, with a correlation coefficient (R2) of 0.997, and limit of detection of 0.046 mg/L. The fluorescence quenching mechanism of the PNCs was determined by the fluorescence lifetime and X-ray photoelectron spectroscopy (XPS) of the PNCs. Overall, the synthesis method for CsPbBr3 PNCs is simple and rapid, and the as-prepared PNCs are stable in water that could be conveniently used for selective detection of Hg2+ in the water environment.  相似文献   

8.
The mechanisms by which Ag+ may quench protein tryptophanyl fluorescence have been studied. A 1:1 Ag+-tryptophan complex was detected spectrophotometrically and shown to have a ka = 6.5 × 103 M?1. The complex was nonfluorescent. Ag+ and NO3? each caused collisional quenching which proceeded at nearly diffusion-controlled rates in a series of indole-containing compounds. Analysis of the rates by means of Stern-Volmer plots and lifetime measurements showed also that charge and the presence of salt influence the quenching rate constants.The fluorescence of nonsulfhydryl proteins was quenched by AgNO3 only in concentrations needed for Stern-Volmer quenching of simple indole model compounds. However, the plots for protein quenching were generally nonlinear, a reflection of the heterogeneity of tryptophanyl residues. AgNO3 quenching increased the polarization of protein fluorescence and decreased the lifetime. Rotational relaxation times were determined from Perrin plots of reciprocal polarization vs fluorescence intensity in the presence of various amounts of AgNO3.The fluorescence of the sulfhydryl proteins ovalbumin, yeast, and equine liver alcohol dehydrogenases was strongly quenched by AgNO3 in parallel with the formation of Ag+-mercaptide bonds. The quenching of fluorescence of sulfhydryl proteins was exhibited even in 8 m urea, thus ruling out conformational change as a major basis for the quenching. It was found that Ag+ mercaptide bond formation was accompanied by development of an ultraviolet absorption band. The reaction of Ag+ with cysteine, for example, could be followed spectrophotometrically. The uv absorption of different silver mercaptides varied with the compound and pH.Since the uv absorption of Ag+-mercaptides extended up to 340 nm, and was also found in Ag+-treated sulfhydryl proteins, energy transfer from excited tryptophans seemed a reasonable basis for the observed fluorescence quenching. This possibility was confirmed by calculation of Förster critical transfer distances for a variety of donor-acceptor (Ag+-mercaptide) pairs.The lifetime of sulfhydryl protein fluorescence was decreased by AgNO3, but the emission spectrum was relatively little affected, in contrast to previously reported quenching by Hg2+. Additional mechanisms of fluorescence alteration by Ag+ in proteins (e.g., “heavy atom” effect, conformational changes, enhancement of sulfhydryl quenching) are also considered.The spectral effects of Ag+ interaction with proteins have the following practical applications:determination of —SH groups; probe of accessibility of binding sites and tryptophan-sulfhydryl distances; determination of rotational relaxation times by Perrin plots of reciprocal polarization vs lifetime; kinetic studies of Ag+ interaction with proteins.  相似文献   

9.
The influence of mercury ions (Hg2+, 10 μM) on photosynthesis was investigated in flagellates and aplanospores of Haematococcus lacustris. Hg2+ stress resulted in a fast decrease of chlorophyll fluorescence yield. This was initially caused by an increase in reversible non-photochemical quenching of chlorophyll fluorescence. During further exposure to Hg2+, an increasing contribution of pH independent non-photochemical quenching and a parallel rise in the content of the xanthophyll cycle pigment zeaxanthin was detected. An increase of the initial chlorophyll fluorescence as a final sign of Hg2+ induced adverse effects on photosynthesis supports our hypothesis that mercury ions predispose to non-reversible, “chronic” photoinhibition.  相似文献   

10.
The 2,4,5-tris(2-pyridyl)imidazole ( L ) molecule has been evaluated as a probe for dual sensing of Hg2+ and Cu2+ ions in EtOH/HEPES buffer medium (5 mM, pH = 7.34, 1:1, v/v). Probe L shows a good sensitive and selective turn-off response in the presence of both Hg2+ and Cu2+ ions, which is comprehensible under long UV light. The probe can detect Cu2+ ion in the pH range 3–11 and Hg2+ ion in pH 6–8. The limit of detection for Cu2+ (0.77 μM) is well under the allowable limit prescribed by the United States Environmental Protection Agency. Two metal (Cu2+/Hg2+) ions are needed per L for complete fluorescence quenching. The probe shows marked reversibility on treatment with Na2EDTA, making the protocol more economical for practical purposes. Paper strip coated with the L solution of EtOH can detect the presence of Cu2+ and Hg2+ ions in the sample using visible quenching of the fluorescence intensity. Density functional theory–time-dependent density functional theory (DFT–TDDFT) calculations support experimental observations, and d-orbitals of Cu2+/Hg2+ provide a nonradiative decay pathway. Cell imaging study using HDF and MDA-MB-231 cells also supported the viability of L in detecting Cu2+ and Hg2+ ions in living cells.  相似文献   

11.
Fluorescent proteins show fluorescence quenching by specific metal ions, which can be applied towards metal biosensing applications. In order to develop metal-biosensor, we performed spectroscopic analysis of the fluorescence quenching of fluorescent protein AmCyan and mOrange2 by various metal ions. The fluorescence intensity of AmCyan was reduced to 48.54% by Co2+ and 67.77% by Zn2+; Cu2+ reduced the fluorescence emission of AmCyan to 19.30% of its maximum. The fluorescence intensity of mOrange2 was quenched by only Cu2+, to 11.48% of its maximum. When analyzed by Langmuir equation, dissociation constants for AmCyan and mOrange2 were 56.10 and 21.46 µM, respectively. The Cu2+ quenching of AmCyan and mOrange2 were reversible upon treatment with the metal chelator EDTA, indicating that the metal ions were located on the protein surface. Their model structures suggest that AmCyan and mOrange2 have novel metal-binding sites.  相似文献   

12.
In this study, fluorescent silver nanoclusters (Ag NCs) were synthesized using denatured fish sperm DNA as the template. In contrast to other methods, this method did not use artificial DNA as the template. After their reaction with denatured fish sperm DNA, Ag+ ions were reduced by NaBH4 to form Ag NCs. The Ag NCs showed a strong fluorescence emission at 650 nm when excited at 585 nm. The fluorescence intensity increased fourfold at pH 3.78, controlled with Britton–Robinson buffer solution. The fluorescence of the Ag NCs was quenched in the presence of trace mercury ions (Hg2+) in a weakly acidic medium and nitrogen atmosphere. The extent of the fluorescence quenching of Ag NCs strongly depends on the Hg2+ ion concentration over a linear range from 2.0 nmol L?1 to 3.0 μmol L?1. The detection limit (3σ/k) for Hg2+ was 0.7 nmol L?1. Thus, a sensitive and rapid method was developed for the detection of Hg2+ ions.  相似文献   

13.
The effect of equimolar concentrations of Hg2+ and Cd2+ on the whole cell absorption spectra, absorption spectra of the extracted phycocyanin (PC) and fluorescence emission spectra of phycobilisomes (PBS) was investigated in the cells of Anabaena flos-aquae. The PC component of the PBS was found to be extremely sensitive to the Hg2+ rather than the Cd2+ ions. Further, the results showed that Hg2+ and Cd2+ induced decrease in the rate of Hill activity (H2O - DCPIP) was partially restored by the electron donor NH2OH, not by the diphenyl carbazide. Similarly, chlorophyll a fluorescence emission in the presence of metals showed that addition of NH2OH could effectively reverse the metal induced alterations in the fluorescence emission intensity. These results, together, suggested that Hg2+ and Cd2+ caused damage to the photosystems (PS) II reaction center. However, a relatively higher stimulation of the chlorophyll a emission at 695 nm with a red shift of 4.0 nm in the presence of Hg2+, and Cd2+ induced preferential decrease in the emission intensity at 676 nm as compared with the peak at 695 nm were indicative of the differential action of Hg2+ and Cd2+ on the PS II.  相似文献   

14.
The sensitive and reliable detection of Hg2+ and CN as harsh environmental contaminants are of great importance. In view of this, a novel ‘on–off–on’ fluorescent probe based on nitrogen-rich silicon quantum dots (NR-SiQDs) has been designed for sensitive detection of Hg2+ and CN ions in aqueous medium. NR-SiQDs were synthesized using a facile, one-step, and environment friendly procedure in the presence of 3-aminopropyl trimethoxysilane (APTMS) and ascorbic acid (AA) as precursors, with l -asparagine as a nitrogen source for surface modification. The NR-SiQDs exhibited strong fluorescence emission at 450 nm with 42.34% quantum yield, satisfactory salt tolerance, and superior photostability and pH stability. The fluorescence emission was effectively quenched using Hg2+ (turn-off) due to the formation of a nonfluorescent stable NR-SiQDs/Hg2+ complex, whereas after the addition of cyanide ions (CN), Hg2+ ions could be leached from the surface of the NR-SiQDs and the fluorescence emission intensity of the quenched NR-SiQDs fully recovered (turn-on) due to the formation of highly stable [Hg(CN)4]2− species. After optimizing the response conditions, the obtained limits of detection were found to be 53 nM and 0.46 μM for Hg2+ and CN, respectively. Finally, the NR-SiQD-based fluorescence probe was utilized to detect Hg2+ and CN ions in water samples and satisfactory results were obtained, suggesting its potential application for environmental monitoring.  相似文献   

15.
Naphthalimide‐based fluorescent probes 1 and 2 were synthesized, and were designed to form probe–Hg complexes through Hg2+ ions coordinated to the amide group and imidazole group. They showed high sensitivity and were selective ‘naked‐eye’ chemosensors for Hg2+ in phosphate buffer. The fluorescence of compounds 1 and 2 could be quenched up to 90% by the addition of Hg2+. Reversible probes can detect Hg2+ ions over a wide pH range (7.0–10.0). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
We prepared an aminothiourea‐derived Schiff base (DA) as a fluorescent chemosensor for Hg2+ ions. Addition of 1 equiv of Hg2+ ions to the aqueous solution of DA gave rise to an obvious fluorescence enhancement and the subsequent addition of more Hg2+ induced gradual fluorescence quenching. Other competing ions, including Pb2+, Cd2+, Cr3+, Zn2+, Fe2+, Co3+, Ni2+, Ca2+, Mg2+, K+ and Na+, did not induce any distinct fluorescence changes, indicating that DA can selectively detect Hg2+ ions in aqueous solution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Biotin binding reduces the tryptophan fluorescence emissions of streptavidin by 39%, blue shifts the emission peak from 333 to 329 nm, and reduces the bandwidth at half height from 53 to 46 nm. The biotin-induced emission difference spectrum resembles that of a moderately polar tryptophan. Streptavidin fluorescence can be described by two lifetime classes: 2.6 nsec (34%) and 1.3 nsec (66%). With biotin bound, lifetimes are 1.3 nsec (26%) and 0.8 nsec (74%). Biotin binding reduces the average fluorescence lifetime from 1.54 to 0.88 nsec. Biotin does not quench the fluorescence of indoles. The fluorescence changes are consistent with biotin binding causing a conformational change which moves tryptophans into proximity to portions of streptavidin which reduce the quantum yield and lifetimes. Fluorescence quenching by acrylamide revealed two classes of fluorophores. Analysis indicated a shielded component comprising 20–28% of the initial fluorescence with (KSV+V)0.55 M–1. The more accessible component has a predominance of static quenching. Measurements of fluorescence lifetimes at different acrylamide concentrations confirmed the strong static quenching. Since static quenching could be due to acrylamide binding to streptavidin, a dye displacement assay for acrylamide binding was constructed. Acrylamide does bind to streptavidin (Ka=5 M–1), and probably binds within the biotin-binding site. In the absence of biotin, none of streptavidin's fluorescence is particularly accessible to iodide. In the presence of biotin, iodide neither quenches fluorescence nor alters emission spectra, and acrylamide access is dramatically reduced. We propose that the three tryptophans which always line the biotin site are sufficiently close to the surface of the binding site to be quenched by bound acrylamide. These tryptophans are shielded from iodide, most probably due to steric or ionic hindrances against diffusion into the binding site. Most of the shielding conferred by biotin binding can be attributed to the direct shielding of these residues and of a fourth tryptophan which moves into the binding site when biotin binds, as shown by X-ray studies (Weberet al., 1989).  相似文献   

18.
The location and environment of tryptophans in the soluble and membrane-bound forms of Staphylococcus aureus alpha-toxin were monitored using intrinsic tryptophan fluorescence. Fluorescence quenching of the toxin monomer in solution indicated varying degrees of tryptophan burial within the protein interior. N-Bromosuccinimide readily abolished 80% of the fluorescence in solution. The residual fluorescence of the modified toxin showed a blue-shifted emission maximum, a longer fluorescence lifetime as compared to the unmodified and membrane-bound alpha-toxin, and a 5- to 6-nm red edge excitation shift, all indicating a restricted tryptophan environment and deeply buried tryptophans. In the membrane-bound form, the fluorescence of alpha-toxin was quenched by iodide, indicating a conformational change leading to exposure of some tryptophans. A shorter average lifetime of tryptophans in the membrane-bound alpha-toxin as compared to the native toxin supported the conclusions based on iodide quenching of the membrane-bound toxin. Fluorescence quenching of membrane-bound alpha-toxin using brominated and spin-labeled fatty acids showed no quenching of fluorescence using brominated lipids. However, significant quenching was observed using 5- and 12-doxyl stearic acids. An average depth calculation using the parallax method indicated that the doxyl-quenchable tryptophans are located at an average depth of 10 A from the center of the bilayer close to the membrane interface. This was found to be in striking agreement with the recently described structure of the membrane-bound form of alpha-toxin.  相似文献   

19.
The yeast scaffold protein Pan1 contains two EH domains at its N‐terminus, a predicted coiled‐coil central region, and a C‐terminal proline‐rich domain. Pan1 is also predicted to contain regions of intrinsic disorder, characteristic of proteins that have many binding partners. In vitro biochemical data suggest that Pan1 exists as a dimer, and we have identified amino acids 705 to 848 as critical for this homotypic interaction. Tryptophan fluorescence was used to further characterize Pan1 conformational states. Pan1 contains four endogenous tryptophans, each in a distinct region of the protein: Trp312 and Trp642 are each in an EH domain, Trp957 is in the central region, and Trp1280 is a critical residue in the Arp2/3 activation domain. To examine the local environment of each of these tryptophans, three of the four tryptophans were mutagenized to phenylalanine to create four proteins, each with only one tryptophan residue. When quenched with acrylamide, these single tryptophan mutants appeared to undergo collisional quenching exclusively and were moderately accessible to the acrylamide molecule. Quenching with iodide or cesium, however, revealed different Stern‐Volmer constants due to unique electrostatic environments of the tryptophan residues. Time‐resolved fluorescence anisotropy data confirmed structural and disorder predictions of Pan1. Further experimentation to fully develop a model of Pan1 conformational dynamics will assist in a deeper understanding of the mechanisms of endocytosis. Proteins 2013; 81:1944–1963. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
The toxic effect of mercuric ions on intestinal cholinergic neurotransmission was investigated in vitro. Hg2+ inhibited the evoked release and enhanced the resting release of ACh. Smooth muscle contraction was irreversibly inhibited by Hg2+ in a concentration-dependent manner, and Na2EDTA did not antagonize this effect. We also investigated if Hg2+ enters the nerve terminal through Ca2+-channels, or Na+-channels, or both. The effects of mercuric ions obtained in our study were completely abolished by the combined administration of TTX and Co2+. It is suggested that the site of the action of mercuric ions is intracellular. We concluded that Hg2+ may interfere with cholinergic transmission by blocking [Ca2+]o-dependent release of ACh and by enhancing [Ca2+]o-independent resting release of ACh. The effect of Hg2+ was not only presynaptic since it also inhibited the effect of ACh on smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号