首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upper Jurassic reefs rich in microbial crusts generally appear in deeper (sponge—‘algal’ crust reefs) or in very shallow but protected settings (coral or coral-coralline sponge meadows with ‘algal’ crusts). Upper Jurassic high-energy reefs (coral reefs and coral-stromatoporoid reefs) normally lack major participation of microbial crusts but rather represent huge bioclastic piles with only minor framestone patches preserved. An exception to this rule is represented by the high-energy, coral-‘algal’ Ota Reef from the Kimmeridgian of the Lusitanian Basin (Portugal). The narrow Ota Reef tract rims a small intra-basinal carbonate platform exhibiting perfect facies zonation (from W to E: Reef tract, back reef sands, peritidal belt, low-energy shallow lagoon). The reef is dominated by massive corals (Thamnasteria, Microsolena, Stylina). Complete preservation of coral framework is rare: like other Upper Jurassic high-energy reefs, the Ota Reef is very rich in debris; however, this debris is largely stabilized by algal and microbial crusts, what contrasts the other examples and gives the Ota Reef the appearance of a typical modern high-energy coral-melobesioid algal reef. Further similarities to modern reefs are the likely existence of a spur-and-groove system, the perfect sheltering of inner platform areas and the occurrence of small islands, as indicated by local blackenings and early vadose and karstic features.  相似文献   

2.
Summary This study documents the facies and fauna of Late Jurassic (Middle Oxfordian) coral reefs in England. Sedimentological and palaeoecological analysis of these reefs distinguishes three generic reef types: (1) small reef patches and thickets associated with siliciclastic deposits; (2) small reef patches and thickets associated with siliciclastic-free bioclastic grainstones and packstones; and (3) biostromal units associated with deep water facies. The depositional environments of these reef types are discussed. Two coral assemblages are identified: (1) the microsolenid assemblage; and (2) theThamnasteria, Isastraea, Fungiastraea andThecosmilia assemblage (Thamnasteria assemblage). TheThamnasteria assemblage developed in all shallow water environments in the study area, regardless of local environmental conditions. The fauna is very eurytopic,r-selected and can tolerate significant environmental fluctuations on short temporal scales (sub-seasonal). The main control on the development of the microsolenid assemblage was low light intensity, low background sedimentation rates and low hydrodynamic energy levels.  相似文献   

3.
Summary Upper Jurassic reefs contain variable amounts of calcareous microbial crusts. In examples from Portugal, Spain and southern Germany they occur within coral biostromes and bioherms, mixed coral-siliceous sponge reefs, siliceous sponge meadows and mudmounds, and build up thrombolities with or without additional reef metazoans. The crusts are of paramount importance for the establishment and development of positive buildups. Commonly, reef growth starts with crusts which develop from a narrow base and rapidly expand laterally by rising above the sea floor. Reef associations with little or no microbial crust normally did not develop distinct relief. The basic microbial crust type is characterised by a dense to peloidal, mostly clotted, hence thrombolitic fabric which developed due to calcification triggered by microbes. Morphological evidence for this organic nature are positive relief, bridge-structures, and the shape and arrangement of peloids. The basic thrombolitic crust type is a eurytopic feature, equally occurring in settings of different bathymetry, waterenergy, salinity and oxygen/nutrient concentrations. However, the crusts also comprise additional micro-encrusters of variable abundance and diversity. The concurrent occurrence of these encrusters and diversity trends allows discrimination between crusts of different environments, particularly of different water depths. Microbial crusts from non-reefal marine oncoids show both similarities and differences with reefal crusts. For some of the mostly enigmatic micro-encrusters new clues to their nature could be detected. For instance, bubble-like structures, formerly interpreted as sporangia inLithocodium could be identified as the foraminiferBullopora aff.laevis, possibly living as a parasite or symbiont in theLithocodium algal tissue.Lithocodium andBacinella are regarded as different organisms.‘Tubiphytes’ morronensis clearly represents a symbiotic intergrowth between a nubeculinellid foraminifer and a microbe of unknown nature. The main prerequisite for the occurrence of microbial crusts is a cessation of background sedimentation which commonly can be tied to rises in sea level. This results in the development of crust-rich reefs. Fluctuations in oxygen and nutrient levels are indicated by dysaerobic bivalves and richness in authigenic glauconite, and led to the microbes outcompeting reefal metazoans, and to the development of thrombolites. Such thrombolites occur at very different depths which is interpreted to be related to a rise of dysaerobic waters due to climatic buffering and lowering of oceanic circulation during sea level rises. Microbial crusts in modern reefs are largely restricted to shaded, cryptic settings which contrasts with the wide distribution of crusts in Upper Jurassic reefs. Microbial crusts were increasingly replaced by coralline red algae since the Late Mesozoic, but despite their restricted modern habitat seem to still play an important, commonly overlooked role in the stabilisation of reef framework.  相似文献   

4.
Summary The roles of Permian colonial corals in forming organic reefs have not been adequately assessed, although they are common fossils in the Permian strata. It is now known that colonial corals were important contributors to reef framework during the middle and late Permian such as those in South China, northeast Japan, Oman and Thailand. A coral reef occurs in Kanjia-ping, Cili County, Hunan, South China. It is formed by erect and unscathed colonies ofWaagenophyllum growing on top of one anotherin situ to form a baffle and framework. Paleontological data of the Cili coral reef indicates a middle to late Changhsing age (Late Permian), corresponding to thePalaeofusulina zone. The coral reef exposure extends along the inner platform margin striking in E-S direction for nearly 4 km laterally and generally 35 to 57 m thick. The Cili coral reef exhibits a lateral differentiation into three main reef facies; reef core facies, fore-reef facies, and marginal slope facies. The major reef-core facies is well exposed in Shenxian-wan and Guanyin-an sections where it rests on the marginal slope facies. Colonial corals are dispersed and preserved in non-living position easward. Sponges become major stabilizing organisms in the eastern part of Changhsing limestone outcrop in Kanjia-ping, but no read sponge reefs were formed. Coral reefs at Cili County in Human are different distinctly from calcisponge reefs in South China in their palaeogeography, lithofacies development, organic constitutuents, palaeoecology and diagenesis. The Cili coral reef also shows differences in age, depositional facies association, reef organisms and diagenesis from coral reefs in South Kitakami of Japan, Khorat Plateau of Thailand, and Saih Hatat of Oman. Although some sponge reefs and mounds can reach up to the unconformable Permian/Triassic boundary, coral reef at Kanjia-ping, Cili County, is the latest Permian reef known. This reef appears to had been formed in a palaeoenvironment that is different from that of the sponge reefs and provides an example of new and unique Permian reef type in South China, and could help us to: 1) understand the significance of colonial corals in Permian carbonate buildups; 2) evaluate the importance of coral community evolution prior to the collapse of reef ecosystems at the Permian/Triassic boundary; 3) better understand the effects of the biotic extinction events in Palaeotethys realm; 4) look for environmental factors that may have controlled reefs through time and space, and 5) provide valuable data for the study of Permian palaeoclimate and global evolutionary changes of Permian reefs and reef community.  相似文献   

5.
Summary Anin situ Oxfordian patch reef from the Süntel hills (florigemma-Bank, Korallenoolith, NW-Germany) is described. It is composed of an autochthonous reef core overlain by a ‘parautochthonous’ biostrome. The exposed reefal area amounts to about 20 m in lateral and up to 4 m in vertical direction. Nearly all major marine reefal fossil associations from the Tethyal realm are present. In the reef core two facies can be distinguished: (1)Thamnasteria dendroidea thicket facies and (2) thrombolite facies. The first facies is composed of a thin branched autochthonous coral thicket mainly constructed ofTh. dendroidea colonies with only a minor portion ofStylosmilia. Frequently, theTh. dendroidea branches laterally coalesce bridge-like forming a delicate initial framework which was subsequently reinforced by thick microbial coatings, that make up approximately 80% of the rock volume. This facies is an excellent example for microbialite binding in reefal architecture. Additionally, several generations of micromorphic and partly cryptic encrusting organisms settled on theTh. dendroidea branches and microbialite crusts. They successively overgrow each other and fill the space between the coral branches in the thicket forming a characteristic community replacement sequence. Initial colonization of theThamnasteria dendroidea took place on an oncoidic/bioclastic hardground. During this early phase of reefal development, microbialites also played an important role in stabilizing and binding the reef body. The thrombolite facies (2) occupying nearly the same volume of the reef body as facies type (1) consists of a thrombolitic microbialitic limestone which fills the interstice between the coral colonies. It shows a considerably lower faunal diversity than theTh. dendroidea facies. Numerous cavities are interspersed in the thrombolithe and are almost completely filled with dolomitized allomicrite. In contrast, microbialite and allomicrite adjacent to the reef core rarely reveal any dolomitized areas. Above the reef core, mostly toppledSolenopora jurassica thalli occur together with a few massiveIsastrea colonies forming a parautochthnous biostrome. They are inhabited by a low diverse assemblage of encrusting organisms. Microbialites are only rarely present in this biostromal unit. The patch reef is developed within a lagoonal limemud facies both separated by a sharp interface. In contrast, continuous facies transition exists between theSolenopora biostrome and adjacent deposits which are characterized by micritic to pelmicritic limestone sometimes with lenses of oncoids. Debris derived from the patch reef is only sporadically intercalated in the reef surrounding lagoonal sediments. Gastropods, bivalves, and dasycladalean algae dominate the lagoonal biota. Up-section following theSolenopora biostrome nerinean gastropods become the most abundant species amounting to a ‘Nerinea-bed’. This horizon moderately elevates above the patch reef indicating, that is arose above the surrounding sea floor forming a relief. The patch reef established on a secondary hardground probably released by a minor transgression and a nondepositional regime. It grew up on a well-illuminated sea floor only a few meters below sea level. Only a low background sedimentation rate and modest water circulation are assumed during reefal growth. These features characterize an open marine lagoon. A subsequent shallowing upwards trend caused emergence of the early lithifiedflorigemma-Bank sediments. In the following erosional phase the reef core,Solenopora biostrome and ‘Nerinea-bed’ were sharply cut. Paleokarst phenomena (karst solution of the rocks, selective leaching of the aragonitic corals) truncate the surface of theflorigemma-Bank. Released by a transgressive sea level, the paleokarst surface is densely inhabited by marine boring and encrusting organisms (oysters, serpulids). Karst cavities are filled with an oncoid-bearing bioclastic limestone with a large portion of siliciclastics. Theflorigemma-Bank is overlain by the reddish bioclastic sandstone of the ‘Zwischenfl?zregion’.  相似文献   

6.
Dr. Oliver Weidlich 《Facies》1996,35(1):133-142
Summary Rugose corals are known from allochthonous Late Permian reefal blocks of the A1 Jil and Ba’id Formation (Hawasina Complex), Oman Mountains. In contrast to many Late Permian Rugosa found elsewhere in the Tethys, they occurred in sponge reefs and contributed to reef construction. The waagenophyllid warm water coral fauna is moderately diverse comprising cerioid, thamnasterioid, and fasciculate taxa. In contrast to sponges, chaetetids, and low-growing reefbuilders, the corals secreted diagenetically stable, most probably Mg-calcitic skeletons. Borings in coral skeletons are consequently well preserved providing important data for the interpretation of reef destructive processes. Thin-section analysis revealed three taxa of infaunal borers includingEntobia Bronn 1837, uncertain thallophyte borings, and borings of unknown bioeroders. Macroborers were more important than microborers, because of the dominance of clionid sponges. Good evidence exists also for the occurrence of two types of undetermined grazers which destroyed the coral surfaces. The amount and distribution of bioerosions is variable among different coral taxa. The fasciculate coralPraewentzelella regulare Flügel 1995 was the favorate substrate. Up to 33% of the calices were bored. Dendroid and compound corals were bored subordinately. Bioerosion of these colonies does not exceed 2%. There is good evidence for substrate preference amongst the borers. Major controlling factors affecting borer distribution are believed to be variations of skeletal density and gross morphology. The borer assemblage could not limit reef accretion significantly. Factors controlling boring activity might have been quality of substrate, sedimentation rate, rapid incrustation of substrates, and competition for food with reef constructors including sponges, chaetetids, and rugose corals.  相似文献   

7.
Summary  The late Triassic succession of the Asher-Atlit 1 borehole is over 1000 m thick, and is composed of reefal and associated facies interbedded with volcanics of Norian age. Only borehole cuttings are available. Microfacies classification and cement stratigraphy determined by optical and CL microscopy, allowed discrimination of six episodes of reef establishment, progradation, shallowing, and termination. Organic buildups are constructed of reef-building biota (sponges, possible corals, encrusting organisms) typical for the late Triassic of the Tethys. Reef-associated facies include fore-slope, central reef, ooid shoal, lagoonal, and supratidal environments. Cement zoning patterns trace diagenetic signatures which range from early neomorphic skeletal replacements and original marine cements, via characteristic burial sequences; depositional and diagenetic sequences are terminated by marginal marine intra- or supratidal conditions, and subaerial exposure with pedogenic overprints. Volcanic episodes tend to be associated with termination of carbonate sedimentation episodes, while volcanic quiescence and subsidence permit vertical progradation of reefal and associated facies. The depositional and progradational environment, rapid rate of sedimentation, periodicity, association with volcanics, and regional considerations, suggest a depositional setting on the rifted shelf-margin of the nascent Neo-Tethys, with a possible eustatic overprint.  相似文献   

8.
Mud mounds: A polygenetic spectrum of fine-grained carbonate buildups   总被引:2,自引:0,他引:2  
Summary This research report contains nine case studies (part II to X) dealing with Palaeozoic and Mesozoic mud mounds, microbial reefs, and modern zones of active micrite production, and two parts (I and XI) summarizing the major questions and results. The formation of different types ofin situ formed micrites (automicrites) in close association with siliceous sponges is documented in Devonian, Carboniferous, Triassic, Jurassic and Cretaceous mounds and suggests a common origin with a modern facies found within reef caves. Processes involved in the formation of autochthonous micrites comprise: (i) calcifying mucus enriched in Asp and Glu, this type presumably is linked to the formation of stromatolites, thrombolites and massive fabrics; (ii) protein-rich substances within confined spaces (e.g. microcavities) result in peloidal pockets, peloidal coatings and peloidal stromatolites, and (iii) decay of sponge soft tissues, presumably enriched with symbiotic bacteria, lead to the micropeloidal preservation of parts of former sponge bodies. As a consequence, there is strong evidence that the primary production of micrite in place represents the initial cause for buildup development. The mode of precipitation corresponds to biologically-induced, matrix-mediated mineralization which results in high-Mg-calcites, isotopically balanced with inorganic cements or equilibrium skeletal carbonates, respectively. If distinct automicritic fabrics are absent, the source or origin of micrite remains questionable. However, the co-occurring identifiable components are inadequate, by quantity and physiology, to explain the enhanced accumulation of fine-grained calcium carbonate. The stromatolite reefs from the Permian Zechstein Basin are regarded as reminiscent of ancestral (Precambrian) reef facies, considered the precursor of automicrite/sponge buildups. Automicrite/sponge buildups represent the basic Phanerozoic reef type. Analogous facies are still present within modern cryptic reef habitats, where the biocalcifying carbonate factory is restricted in space.  相似文献   

9.
In Recent coral reefs, emersion has resulted in the development of special growth forms of colonial corals which have been named microatolls. These colonies grow almost exclusively in a horizontal direction. In the upper part of the colony, subaerial exposure leads to the decay of the living body. The growth then stops and the skeleton is later colonized by various boring and encrusting organisms. Here we show the first record of a massive Mesozoic coral colony displaying the main features of emersion. The colony has been collected in perireefal Oxfordian (Jurassic) limestones from the Jura Mountains (France). It is situated exactly at the expected place in a shallowing-upward sequence between infralittoral buildups and supralittoral limestones. We suggest that such growth structures could be more common than previously thought in ancient coralliferous sediments and add some new details to discriminate between these colonies.  相似文献   

10.
Summary Upper Jurassic (Malm δ to ζ1) massive limestones (‘algal-sponge-reefs, sponge-reefs, reef-complexes, reefs, algal-sponge-bioherms, biolithites, Massenkalk, bioherms, Stillwasser-Mudmounds’) were analyzed in the Southern Swabian Alb, the Southern Franconian Alb and in drilling wells in the Molasse basin (Southern Bavaria). This analysis was carried out within the frame of a multidisciplinary DFG-study with the objective of decifering the controls on the development of Upper Jurassic spongiolites, their three-dimensional distribution, their characteristic faunal composition, and the diagenetic trends of the different primary facies. The data base consists of detailed facies mapping in the areas of the Eybtal and the Blautal (1300 samples) as well as comparative studies in the Upper Donautal (Swabian Alb) and the Southern Franconian Alb (400 samples). All together about 500 thin sections were studied. The distribution of the most important components (ooids, intraclasts, peloids, corals, sponges, sponge spicules, cyanobacterial crusts, brachiopods, molluscs, echinoids, bryozoans, serpulids,Terebella, Tubiphytes), and diagenetic features (dolomite, dedolomite, silicification, stylolites, clay flasers, hematite patches) results in a spatial distribution pattern of facies types. The largest part (70 %) of the massive limestones consists of a peloid-lithoclast-ooid sand facies rich in completely or partly micritized ooids. These ooids, especially in beds of the Malm δ to ε, might be the clue to a reinterpretation of the water depth. True biogenic constructions occur (about 30 % of the volume; sponge-algalmudmounds, algal-sponge-boundstones, and brachiopod-algal-sponge-mounds) within and at the margins of this facies and are interpreted as platform sands. The spatial distribution of the buildups in relation to the sand facies was probably controlled by hydrodynamic conditions. In addition, zoned sponge-algal-mounds occur in intraplatform channels and nodular sponge-algal-mudmounds in the marly basin sediments between platform sand areas. Breccias and slumpings in beds older than the Malm ζ have to be reinterpreted. Most of the breccias found originated from the flanks of the sand platforms, reflecting the faunal composition of the algal-sponge-boundstones which stabilized the flanks. Breccias of this composition occur throughout the Malm δ-ζ1 and differ markedly in their composition from the sand facies. The boundary breccia (Malm ε/ζ1) is interpreted as marking a regressive maximum. The increasing growth of buildups, rich in brachiopods in the Malm ζ1, is ascribed to an increase of reef growth at the beginning of a transgression. Detailed facies analyses necessary for the reconstruction of the spatial distribution of different facies types are in progress. Most of the older data on faunal distributions cannot be used for detailed facies analysis because they differentiated only between massive facies and bedded facies. Therefore Upper Jurassic limestones of Southern Germany should be restudied in order to recognize the volumetric importance of sand facies and buildups within massive limestones.  相似文献   

11.
Middleton and Elizabeth Reefs are two mid-latitude, annular reefs within the Lord Howe linear chain of volcanic islands and seamounts in the southwestern Pacific Ocean. Drilling, vibrocoring, seismic profiling, and dating indicate that each has a rim of Holocene reef framework, enclosing a lagoon partly filled by prograding sand sheets composed of fragments of coral, coralline algae, foraminifers, and other skeletal debris. The reefs lie close to the latitudinal limits for coral growth and the reef framework is very porous, dominated by branching rather than massive corals. Coralline algae are the principal binding agent in the upper reef framework. Holocene reef growth began on a foundation of Pleistocene reefal limestone encountered at a depth of 8 m in cores on the windward side of Middleton Reef. Holocene corals became established on this foundation around 6,700 radiocarbon yr B.P., implying little if any lag after inundation of the platform by the post-glacial sea-level rise. Windward reef growth tracked sea-level rise (keep-up mode), and a prominent reef crest was established on both reefs by 5,000 yr B.P. Leeward margins appear to have been characterized by catch-up growth. Development of cays is limited, and has been restricted by the paucity of coarse coralline debris or cemented conglomerate on which islands could become established. The morphology and development of Middleton and Elizabeth Reefs has been similar to that of tropical atolls, although the rate of subsidence appears to have been relatively slow reflecting their position on the margin of the foundered continental crust of the Lord Howe Rise.  相似文献   

12.
Microfacies of the Early to Middle Norian reefal limestone of the Sambosan Accretionary Complex (SAC) at Kamase locality, southwest Japan, are classified into seven major facies types in stratigraphic order: peloidal grainstone-packstone, unfossiliferous lime-mudstone, tubular problematica-rich wackestone, sponge-coral floatstone, sponge bafflestone, coral rudstone, and peloidal-bioclastic packstone-grainstone. The SAC records patch reef development on a mid-oceanic seamount in the Panthalassa Ocean. Because most examples of Triassic reefs come from the former Tethys, counterparts such as those from the SAC are pivotal in resolving paleogeographic issues as well as clarifying the depositional patterns between the eastern Tethys and adjacent western Pacific (Panthalassa). We also reveal that the primary stratigraphy of the reefal limestone was disrupted by submarine landslides of the seamount in an open-ocean realm during the late Middle to Late Jurassic time.  相似文献   

13.
During the Middle Oxfordian, numerous coral reefs flourished on the northern margin of the Tethys Ocean. The outcrop of Bonnevaux-le-Prieuré (northern French Jura mountains) provides a rare opportunity to observe a nearly complete section allowing the installation, evolution and demise of this global carbonate reef rich event to be studied. Quantitative data on coral assemblages together with sedimentological and palaeoecological observations lead to the reconstruction of a reef tract coral zonation. Starting from the outer slope, Dimorpharaea, Microsolena, Dendraraea, Comoseris, and Stylina ecozones are recognized. This new facies model implies a central position for an oolitic shoal in the highest energy zone, within the Comoseris ecozone. Applying this facies model to the sequence stratigraphic interpretation of the vertical succession results in recognising a third-order relative sea-level fluctuation, which can be correlated at least with Lorraine (France) and Switzerland.  相似文献   

14.
Summary The Upper Ordovician reefs of the Urals were formed at a subsiding shelf-margin during an early Late Ashgillian (Sur’ya time interval) regressive phase. Reefs of this age were studied in detail from the western slope of the Northern, the Subpolar and the Polar Urals with respect to lithofacies, biotic composition and paleogeographical patterns. The thickness of the reefs varies between 100 and 500 m. The backreef areas are characterized by lagoons with increased salinity and sabkha development. Microbial associations and a diverse algal flora (Cyanophyta, green and red algae and alga incertae sedis) are the main constituents of reefal boundstones. Tabulate and rugose corals, heliolitids, calcareous sponge-like fossils, bryozoans and problematic hydroids were also part of the reef communities. Each reef exhibits a characteristic framework-building association. Reef development was terminated by a rapid and abrupt sea-level rise at the end of the middle Upper Ashgillian connected with the global Late Ordovician glaciation.  相似文献   

15.
Carsten Helm  Immo Schülke 《Facies》2006,52(3):441-467
Small reefal bioconstructions that developed in lagoonal settings are widespread in a few horizons of the Late Jurassic (Oxfordian) succession of the Korallenoolith Formation, exposed southwest of Hannover, Northwest Germany. Especially the florigemma-Bank Member, “sandwiched” between oolite shoal deposits, exposes a high variety of build-ups, ranging from coral thrombolite patch reefs, to biostromes and to coral meadows. The reefs show a distribution with gradual facies variations along an outcrop belt that extends about 30 km from the Wesergebirge in the NW to the Osterwald Mts in the SE.The patch reefs from the Deister Mts locality at the “Speckhals” are developed as coral-chaetetid-solenoporid-microbialite reefs and represent a reef type that was hitherto unknown so far north of its Tethyan counterparts. They are mainly built up by coral thickets that are preserved in situ up to 1.5 m in height and a few metres in diameter. They contain up to 20 coral species of different morphotypes but are chiefly composed of phaceloid Stylosmilia corallina and Goniocora socialis subordinately. The tightly branched Stylosmilia colonies are stabilized by their anastomosing growth. The coral branches are coated with microbial crusts and micro-encrusters reinforcing the coral framework. Encrusters and other biota within the thicket show a typical community replacement sequence: Lithocodium aggregatum, Koskinobullina socialis and Iberopora bodeuri are pioneer organisms, whereas the occurrence of non-rigid sponges represents the terminal growth stage. The latter are preserved in situ and seem to be characteristic so far poorly known constituents of the Late Jurassic cryptobiont reef dweller community. The distance and overall arrangement of branches seems to be the crucial factor for the manifestation of a (cryptic) habitat promoting such community replacement sequences. Widely spaced branches often lack any encrusting and/or other reef dwelling organisms, whereas tightly branched corals, as is St. corallina, stimulate such biota. Hence, such reefs are well suited for research on coelobites and community sequences of encrusting and cavity dwelling organisms.  相似文献   

16.
A succession of Frasnian mounds on the southern border of the Dinant Synclinorium (Belgium) was investigated for their facies architecture, sedimentary dynamics and palaeogeographic evolution. Seven mound facies were defined from the Arche (A) and Lion (L) members, each characterized by a specific range of textures and association of organisms (A2/L2: red or pink limestone with stromatactis, corals and crinoids; A3/L3: grey, pink or green limestone with stromatactis, corals and stromatoporoids; A4/L4: grey limestone with corals, peloids and dasycladaceens; A5/L5: grey microbial limestone; A6/L6: grey limestone with dendroid stromatoporoids; A7/L7: grey laminated limestone with fenestrae; and A8/L8: grey bioturbated limestone). Laterally equivalent sediments include substantial reworked material from the buildups and background sedimentation. Textures and fossils suggest that A2/L2 and A3/L3 facies developed close to storm wave base, in a subphotic environment. Facies A4/L4, occurring near fair weather wave base in the euphotic zone, includes lenses of A5/L5 with stromatolitic coatings and thrombolithes. A6/L6 corresponds to a slightly restricted environment and shows a progressive transition to fenestral limestone of A7/L7. This facies was deposited in a moderately restricted intertidal area. A8/L8 developed in a quiet lagoonal subtidal environment. The mounds started with A2/L2 or A3/L3 in which microbial lenses and algal facies A4/L4 became progressively more abundant upwards. Following 20 m of laterally undifferentiated facies, more restricted facies occur in the central part of the buildups. This geometry suggests the initiation of restricted sedimentation, sheltered by bindstone or floatstone facies. The facies interpretation shows that after construction of the lower part of the mounds during a transgression and a sea-level highstand, a lowstand forced reef growth to the margin of the buildups, initiating the development of atoll-like crowns during the subsequent transgressive stage. The persistence of restricted facies results from the balance between sea-level rise and reef growth.  相似文献   

17.
Summary Although carbonate buildups host important hydrocarbon reservoirs and industrial minerals, relatively little is known about their three-dimensional architecture. Ground-penetrating radar (GPR, “Georadar”) studies provide the opportunity to reconstruct both their internal anatomy and external geometry. This short paper reports an initial attempt to map some Upper Jurassic sponge/algal buildups in the Upper Jurassic of SW-Germany using georadar. Several distinct radar facies types can be distinguished and calibrated to lithofacies in adjacent quarry outcrops. Mapping of the radar facies types reveals the potential to reconstruct the distribution of “buildup” versus other facies. Moreover, it highlights the need of obtaining more closely spaced radar lines in order to arrive at a high-resolution image.  相似文献   

18.
Eighteen scleractinian coral species belonging to 13 genera, 8 families and 4 suborders have been identified from the lower and upper parts of the Upper Jurassic (Oxfordian) Hanifa Formation at Jabal Al-Abakkayn, central Saudi Arabia. Actinastrea bernensis, A. crassoramosa, Coenastraea hyatti, Stylina kachensis, Cryptocoenia slovenica, C. wegeneri, Isastrea hemisphaerica, I. bernensis, Montlivaltia cornutiformis, M. frustriformis, Collignonastraea jumarensis, Ovalastrea michelini and Vallimeandropsis davidsoni are believed to be recorded for the first time from the Jurassic rocks of central Arabia. Most corals have massive hemispherical and globular forms, and few corals have dendroid and conical growth forms. They occur as small, isolated patches, about 0.5 m thick and about 10–30 m wide, in argillaceous reefal limestones. The identified corals show Africa, north America, northern, southern and western Europe, and southern or eastern Asia corals. The low diversity and abundance as well as the small size of colonies are attributed to inimical palaeoecological factors throughout the reefoids formation such as muddy substratum, water turbidity, high rate of sedimentation.  相似文献   

19.
Middle to Upper Oxfordian reefs of a shallow marine carbonate platform located in northeastern France show important facies changes in conjunction with terrigeneous contents. The Pagny-sur-Meuse section shows coral-microbialite reefs that developed both in pure carbonate limestones and in mixed carbonate-siliciclastic deposits. Phototrophic coral associations dominated in pure carbonate environments, whereas a mixed phototrophic/heterotrophic coral fauna occurred in more siliciclastic settings. Microbialites occur in pure carbonate facies but are more abundant in mixed carbonate-siliciclastic settings. Reefs seem to have lived through periods favourable for intense coral growth that was contemporaneous with a first microbialitic layer and periods more favourable for large microbialitic development (second microbialitic layer). The first microbialitic crust probably developed within the reef body and thus appears to be controlled by autogenic factors. The second generation of microbialites tended to develop over the entire reef surface and was probably mainly controlled by allogenic factors. Variations in terrigeneous input and nutrient content, rather related to climatic conditions than to water depth and accumulation rate, were major factors controlling development of reefs and their taxonomic composition.  相似文献   

20.
Summary Upper Cretaceous and Paleocene reef limestones from the Maiella carbonate platform show how reefs evolved during a time of faunal turn-over. Biostratigraphy and facies analysis of the reef limestones reveal the details of reef growth, composition, and age. Rudists disappeared as reef builders from the Maiella platform shortly before the Cretaceous/Tertiary boundary. Small coral-algal reefs became established in the Danian to Late Thanetian. These scleractinian-red algal dominated boundstones and framestones represent two periods of reef sedimentation and the subsequent interruption of reef growth by emersion and erosion, controlled primarily by fluctuations of relative sea-level. The coral-algal reefs evolved as the taxonomic composition of reef organisms changed. The Paleocene reef sediments are preserved as large slide blocks and as boulders redeposited from the shallow-water platform onto the slope during the course of the Paleocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号