首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
BIOCHEMICAL EFFECTS OF THYROID DEFICIENCY ON THE DEVELOPING BRAIN   总被引:12,自引:1,他引:11  
Abstract— The effects of neonatal thyroidectomy on some constituents of the cerebrum, cerebellum and liver of the rat have been studied during the first 7 weeks of life. In the normal rat between the 6th and 14th post-natal days the RNA content per unit of DNA in the brain increased by 70 per cent. Although the brain continued to grow from the 14th to the 35th day, the amount of RNA relative to DNA decreased by about 20 per cent. The ratio of protein to DNA increased during the whole period studied and in the cerebral cortex it was more than trebled between the age of 6 and 35 days. The growth of the cerebellum extended over a longer period than that of the cerebrum, its weight increasing by 88 per cent between the ages of 14 and 35 days as compared with a cerebral increase of 34 per cent. The DNA content showed a 50 per cent increase during this period. Qualitatively these maturational changes were not affected by neonatal thyroidectomy. Quantitative changes, which applied equally to the cerebral cortex and brain as a whole, were observed. At the age of 35 days, the weights of the cerebral hemispheres and cerebellum were reduced by thyroidectomy by 20 per cent; the overall DNA content per organ did not change, but the amounts of protein and RNA relative to DNA decreased significantly. It is therefore inferred that thyroid deficiency affects the size of the cells in brain and cerebellum rather than their total number. Conversely, the cell population of the liver was only a quarter of that in the control. There was a small but significant decrease in the hepatic protein and RNA content in the hypothyroid animal. The activities of the following enzymes which served as markers for subcellular fractions in homogenates of cerebral cortex were determined: lactate dehydrogenase for the supernatant, glutamate dehydrogenase for the mitochondrial and glutamate decarboxylase for the synaptosomal fractions. When the activities were expressed on a fresh weight basis a significant decrease by comparison with the control values was observed only in the case of glutamate decarboxylase (—15 per cent at the age of 17–32 days); when the activities were based on DNA content all values were reduced, probably as a result of the general decrease in cell size. Pyrimidine metabolism of brain and liver, studied after the administration of [6-14C]-orotic acid, was not affected in either tissue by neonatal thyroidectomy. A small but significant reduction in the incorporation of labelled pyrimidine nucleotides in liver RNA was observed, but no significant decrease in the incorporation in cerebral RNA was found in the hypothyroid rats.  相似文献   

2.
(1) Treatment with cortisol acetate (0.2 mg daily during the first 4 days after birth) reduced the rate of growth in the rat: at 35 days of age the body weight was reduced by 50 per cent and the brain weight, depending on the region, by up to 30 per cent. (2) In the brain the normal increase in cell number was severely inhibited during the period of cortisol treatment; this resulted in a final deficit in cell number of about 20 per cent in the cerebrum and 30 per cent in the cerebellum. (3) To determine whether cortisol affected primarily cell formation or cell destruction the labelling of brain DNA was studied 1 h after a subcutaneous injection of 20 Ci/100 g [2-14C]thymidine. In the controls the amount of labelled DNA increased by a factor of two in the cerebrum and seven in the cerebellum during the period 2-13 days, and it decreased to 40 and 27 per cent of the peak values in the cerebrum and cerebellum respectively in the following 7 days. The results indicated that mitotic activity is higher in the cerebellum than in the cerebrum in the 2nd week of life. It would appear that in the cerebrum appreciable cell death accompanies new cell formation, especially during the period 13-35 days of age. (4) Cortisol treatment affected cell division rather than cell destruction in the brain since it strongly inhibited the incorporation of [2-14C]thymidine into DNA. The inhibition was severe during the period of treatment but it did not result in a lasting fall in mitotic activity. At the age of 13 days the amount of labelled DNA formed approached the normal level and it was twice that in controls at 20 days, indicating a tendency for compensating cell deficit by an accelerated mitotic activity. Nevertheless, massive cell proliferation ceased at about the same age as in normals; the labelling of DNA decreased markedly between 13 and 20 days after birth, and the DNA content did not increase after the age of 20 days. (5) In contrast to the marked effect on cell number, cortisol treatment did not influence significantly the maturational changes related to average cell size (DNA concentration) or the chemical composition of cells (RNA/DNA and protein/DNA).  相似文献   

3.
Abstract— Cell nuclei were isolated in yields ranging from 38 to 61 per cent from six anatomically defined brain regions of the albino rat. To provide basic information for further studies of altered genomic activity in brain cell nuclei, various properties of these isolated nuclei were measured, including counts of their number, estimates of the distribution of sizes, amounts of RNA, DNA and protein, and endogenous RNA polymerase activity. DNA content per nucleus approximated the accepted value of 6 pg per diploid set of chromosomes. Distributions of nuclear size showed a sensitivity to the concentration of divalent cation, with a shift toward larger nuclear diameters as the Mg concentration was reduced. Cell nuclei from hippocampus, hypothalamus-preoptic region, cerebral cortex, amygdala and midbrain plus brainstem were generally similar in yield, distribution of size, and RNA, DNA and protein content. Cell nuclei from cerebellum differed from those of other brain regions, in all of these parameters. The cerebellum contained a high content of DNA and had an enormous number (8 × 108 per g wet wt.) of cell nuclei of predominantly very small size and characterized by lower ratios of RNA, histones and non-histone protein to DNA and lower endogenous activity of RNA polymerase than nuclei from other brain structures. These properties correlated well with properties of cerebellar tissue, namely, high content of small granule neurons and low ratio of RNA to DNA, and suggest that the small cerebellar nuclei may have relatively inactive genomes. The relationship of 'large' and 'small' cell nuclei to cell types in the brain is discussed.  相似文献   

4.
1. The synthesis of ribonucleic acid, desoxyribomicleic acid, and protein in S. muscae has been studied: (a) during the lag phase, (b) during the early log phase, and (c) while the cells are forming an adaptive enzyme for lactose utilization. 2. During the lag phase there may be a 60 per cent increase in ribonucleic acid and protein and a 50 per cent increase in dry weight without a change in cell count, as determined microscopically, or an increase in turbidity. 3. During this period, the increase in protein closely parallels the increase in ribonucleic acid, in contrast to desoxyribonucleic acid, which begins to be synthesized about 45 minutes after the protein and ribonucleic acid have begun to increase. 4. The RNA N/protein N ratio is proportional to the growth rate of all S. muscae strains studied. 5. While the RNA content per cell during the early log phase depends upon the growth rate, the DNA content per cell is fairly constant irrespective of the growth rate of the cell. 6. Resting cells of S. muscae have approximately the same RNA content per cell irrespective of their prospective growth rate. 7. While the cells are adapting to lactose, during which time there is little or no cellular division, there is never an increase of protein without a simultaneous increase in ribonucleic acid, the RNA N/protein N ratio during these intervals being approximately 0.15. 8. Lactose-adapting cells show a loss of ribonucleic acid. The purines-pyrimidines of the ribonucleic acid can be recovered in the cold 5 per cent trichloroacetic acid fraction, but the ribose component is completely lost from the system. 9. The significance of these results is discussed in relation to the importance of ribonucleic acid for protein synthesis.  相似文献   

5.
6.
Prototheca zopfii, a eukaryote that divides by multiple fission, was investigated to determine how growth rate controls daughter cell number. The macromolecular composition, cell size, and number of nuclei per cell were determined in cultures during balanced growth in various media. Cellular mass, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), carbohydrate, and nuclear number increased as positive linear functions of growth rate, whereas nuclear ploidy remained constant with a value of 0.098 pg of DNA/nucleus. The ratios of RNA to protein, protein to mass, and carbohydrate to mass were unaffected by growth rate, whereas the ratios of DNA to protein and RNA to DNA could be expressed as curvilinear functions of growth rate, the former negative and the latter positive. The dependency of normalized gene dosage (DNA/protein) on growth rate appeared as a distinguishing feature of multiple fission. Determination of the normalized rates of protein and RNA synthesis revealed that both increase linearly with growth rate. It is concluded that Prototheca zopfii may exist in a number of physiological states which are characterized by a unique size and macromolecular composition and which are dictated by growth rate.  相似文献   

7.
EFFECT OF UNDERNUTRITION ON CELL FORMATION IN THE RAT BRAIN   总被引:4,自引:2,他引:2  
Abstract— Rats were undernourished by approximately halving the normal food given from the 6th day of gestation throughout lactation. Growth of the foetuses was nearly normal, in marked contrast to the severe retardation caused by undernutrition during the suckling period. In comparison with controls the size and the DNA content of the brain were permanently reduced by undernutrition during the suckling period: this effect was relatively small, approx. 15 per cent decrease at 21 and 35 days. The rate of 14C incorporation into brain DNA at 30 min after administration of [2-14C] thymidine was taken as an index of mitotic activity; compared with controls there was severe reduction in mitotic activity (maximal decrease by about 80 per cent at 6 days in the cerebrum and by 70 per cent at 10 days in the cerebellum). The rate of acquisition of cells was calculated from the slopes of the logistic curves fitted to the estimated DNA contents. In normal animals the maximal slope was attained at 2·7 days and at 12·8 days after birth in cerebrum and cerebellum respectively; the daily acquisition of cells at these times was 4·8 × 106 and 18 × 106 cells respectively. The fractional increase in cell number at the maximum was 5·4 percent per day in the cerebrum and 15·2 per cent per day in the cerebellum. The rate of acquisition of cells relative to the rate of mitotic activity was higher in the brains of undernourished animals than in controls. One of the compensatory mechanisms for the severe depression of mitotic activity in the brain of undernourished animals Seems to involve a reduction in the normal rate of cell loss.  相似文献   

8.
One-day old American kestrel (Falco sparverius) nestlings were orally dosed daily with 5 microliters/g of corn oil (controls), 25, 125 or 625 mg/kg of metallic lead in corn oil for 10 days. Forty per cent of the nestlings receiving 625 mg/kg of lead died after 6 days and growth rates were significantly depressed in the two highest lead dosed groups. At 10 days hematocrit values were significantly lower in the two highest lead treated groups, and hemoglobin content and red blood cell delta-aminolevulinic acid dehydratase (ALAD) activity was depressed in all lead treated groups. Plasma creatine phosphokinase decreased in the two highest treatment groups. Brain, liver and kidney ALAD activities, brain RNA to protein ratio and liver protein concentration decreased after lead exposure whereas liver DNA, DNA to RNA ratio and DNA to protein ratio increased. Brain monoamine oxidase and ATPase were not significantly altered. Measurements of the ontogeny of hematological variants and enzymes in normal development, using additional untreated nestlings, revealed decreases in red blood cell ALAD, plasma aspartate amino transferase, lactate dehydrogenase, brain DNA and RNA and liver DNA, whereas hematocrit, hemoglobin, plasma alkaline phosphatase, brain monoamine oxidase, brain ALAD and liver ALAD increased during the first 10 days of posthatching development. Biochemical and hematological alterations were more severe than those reported in adult kestrels or precocial young birds exposed to lead. Alterations may be due in part to delayed development.  相似文献   

9.
10.
The cellular RNA content of mouse fibroblasts incubated with actinomycin decreases at a rate of about 1 to 1.5 per cent per hour, while DNA and protein content remain unchanged. This degradation affects nuclear and cytoplasmic RNA, ribosomal and soluble RNA. The breakdown products appear quantitatively in the acid-soluble fraction of the cells and the medium. Polynucleotides synthesized a short period (120 minutes) prior to exposure to actinomycin are degraded before those synthesized 8 to 12 hours previously.  相似文献   

11.
Tetrahymena pyriformis were brought to a non-growing state by removal of pyrimidines from their growth medium. During pyrimidine deprivation cell number increased 3- to 4 fold, and this increase was accompanied by one or more complete cycles of macronuclear DNA replication. Autoradiographic studies show that endogenous protein and RNA were turning over throughout starvation and that RNA breakdown products were used to support the DNA synthesis that occurred during the early period of starvation. However, after 72 hours of starvation all DNA synthesis and cell division had ceased. Feulgen microspectrophotometry shows the macronuclei of these cells to have been stopped at a point prior to DNA replication (G1 stage). After pyrimidine replacement the incorporation of H3-uridine, H3-adenosine, and H3-leucine was measured by the autoradiographic grain counting method. The results indicate that RNA synthesis began to increase almost immediately, but that there was a lag of almost an hour before an increase in protein synthesis. In agreement with the autoradiographic data, chemical data also show that cellular content of RNA began to increase shortly after pyrimidine replacement but that cellular protein content did not increase until about one hour later. Pulse labeling of the cells with H3-thymidine at intervals after pyrimidine replacement shows that labeled macronuclei first began to appear at 150 minutes; that 98 per cent of the macronuclei were in DNA synthesis at 240 to 270 minutes; and that the percentage then began to decrease from 300 to 390 minutes, at which time only 25 per cent of the macronuclei were labeled. Cellular content of DNA did not increase for at least 135 minutes after pyrimidine replacement; however, just before the first cells divided (360 minutes) the DNA content had doubled. After pyrimidine replacement the cells first began to divide at 360 minutes, and 50 per cent had divided at 420 minutes; however, all cells had not divided until 573 minutes. This technique of chemical synchronization of cells in mass cultures makes feasible detailed biochemical analysis of events leading to nuclear DNA replication and cell division.  相似文献   

12.
We evaluated RNA/DNA ratio as an index of physiological condition during larval development of a hybrid between the fishes Colossoma macropomum (cachama) and Piaractus brachypomus (morocoto). The samples were obtained by induced reproductive technology and the eggs were maintained in acrylic conical incubator with a continuous waterflow. Embryonic development, from egg fertilization to cell division and hatch out, took 12 hours 20 minutes at 29.5 degrees C, dissolved oxygen contents of 6.0 ppm and pH 7.5. Nucleic acids quantification was determined by fluorometry with ethidium bromide and Hoechst 33258 dyes. We observed significant changes of RNA/DNA ratios during all stages of the embryonic larval development. Therefore, RNA/DNA relation is an useful technique to evaluate physiological condition in short period and could be utilized as nutritional condition and/or instantaneous growth for routine check to verify the health status in early life of cultivated species.  相似文献   

13.
Abstract— In contrast to mouse brain, the content of putrescine in fish brain considerably exceeds that of spermine and spermidine. While we observed constant protein, RNA and spermidine concentrations in fish brains of weights between 60 and 800 mg, DNA and spermine concentrations diminished with increasing brain weight, the content of spermine per cell being constant throughout life. It can be concluded from our results that growth of fish brain results both from cell enlargement and cell proliferation. The concomitant changes of spermine and DNA concentrations in the growing fish brain are the first example of a direct quantitative relationship between these cell constituents and provides evidence on their possible functional relationship in the cell nucleus.  相似文献   

14.
The kinetics of two growth parameters (total RNA and total protein accumulation) was followed in synchronized cultures of the chlorococcal alga Scenedesmus quadricauda ( Turp.) Bréb. under conditions of inhibited DNA replication in the presence of 5-fluorodeoxyuridine (25 mg.L-1). In the control culture, growth processes occurred in several steps with a decreasing rate of accumulation of RNA and protein amount approximately at each doubled value of the preceding step. Oscillations in the rate of growth processes in the control culture were temporally related to the initiation of individual reproductive steps. At each doubling, the cell became committed to triggering a sequence of reproductive processes, starting with DNA replication and ending with protoplast fission. Three commitment points were attained in the control culture and, consequently, three replication rounds of DNA followed by three nuclear divisions and three protoplast fissions occurred during one cell cycle. If 5-fluorodeoxyuridine (FdUrd) was added at the beginning of the cell cycle, no reproductive processes occurred, and the cells remained uninuclear with one genome and did not divide. RNA accumulation did not seem to be affected by the presence of FdUrd for at least one cell cycle, and three or four doublings in the amount of RNA occurred during this period. Protein accumulation was even more independent of reproductive processes in the cell and continued for a period of about two or three cell cycles, attaining six doublings at the end of this period. Therefore, oscillations in the rate of protein or RNA accumulation remained even if reproductive processes were inhibited .  相似文献   

15.
Slowly growing populations (TD = 70 to 80 min) of Streptococcus faecium (S. faecalis ATCC 9790) were synchronized by selection after sucrose gradient fractionation. The cell cycle was approximated by correlating the patterns of DNA accumulation and cell division. More specifically, the beginning of cell cycle was equated with the beginning of a rapid linear increase in DNA accumulation. The DNA content of the culture approximately doubled during the period of accumulation, which lasted about 51 min. The period of rapid DNA accumulation, was followed by a period of reduced accumulation that lasted about 24 min. During synchronized growth, cell numbers increased rapidly in coordination with the period of rapid DNA accumulation and exhibited a plateau during the period of reduced DNA accumulation. In contrast, RNA and protein appeared to accumulate exponentially throughout the cell cycle at the same rate as culture mass.  相似文献   

16.
1. Protein, RNA, DNA, glycogen and lipid content were determined in Daphnia magna on days 0, 2, 4, 6, 8 and 21 of growth and development. The composition of D. magna as percentage of reconstituted dry weight was similar to other zooplankton with the exception of DNA content, which was lower than values previously reported.
2. The relative content of protein, RNA, DNA and reconstituted dry weight changed during the 21-day growth period, and these changes were related to growth rate and total growth of D. magna . RNA:protein, RNA: reconstituted dry weight, and protein:RNA : DNA ratios were highly correlated to relative growth rate and total growth as measured by protein content or reconstituted dry weight.
3. Addition of progeny biomass to adult biomass increased correlations between biochemical ratios and absolute growth rate, but had little effect on relationships involving relative growth rate or total growth.
4. The relationship between biomolecule ratios and growth established for D. magna grown under optimal conditions was not successful in predicting growth of D. magna reared under crowded conditions.
5. These data indicate that variation in biochemical ratios among life, stages of D. magna may be used to predict growth of organisms grown under similar conditions, but may not be extended to other situations. It is suggested, however, that variation in biochemical ratios in a particular life stage of a zooplankton species may be related to the productivity for that species.  相似文献   

17.
The accumulation of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein was followed in cultures of Escherichia coli B/r during exponential growth in different media and for 2 h after a nutritional shift-up from succinate minimal medium (growth rate [mu1] = 0.67 doublings per h) to glucose plus amino acids medium (mu2 = 3.14 doublings per h). During postshift growth of the culture, the amounts of RNA (R), DNA (D), and protein (P) increased such that the ratios of the increments (delta R/delta P; delta D/delta P) were constants (k1, k2). This implies that the rates of accumulation of nuclei1:k2:1. These constants change from their preshift value to their final postshift value (i.e., k1 and k2) within a few minutes after the shift. k1 is a function of the activity of ribosomes, whereas k2 is related to the initiation of rounds of DNA replication. These parameters and the observed change in the doubling time of RNA (= mu2/mu1) were used to derive kinetic equations that describe the accumulation of DNA, RNA, protein, and cell mass during the 2- to 3-h transition period after a shift-up. The calculated kinetics agree closely with the observed kinetics.  相似文献   

18.
研究通过对岩原鲤仔鱼在饥饿和再投喂条件下其生存、生长率、RNA/DNA和RNA/蛋白质比率的测定,评估了仔鱼对饥饿的耐受能力和恢复能力。在(19.5±0.5)℃水温下,将岀膜后第16天的岩原鲤仔鱼随机分成6个组:1个持续投饲对照组,实验组分别禁食1、2、3、4、5d后再投喂,实验共进行10d。每天分别从各组取9尾鱼测定体重、体长、RNA、DNA、蛋白质含量。实验结果显示,饥饿处理组仔鱼存活率和以上各项生长指标均随饥饿时间的增加而下降,在恢复投喂后均表现不同程度的补偿生长,其中饥饿1、2、3d的仔鱼在恢复投喂后显示出完全补偿生长,几乎弥补了饥饿所产生的影响,平均终体重与对照组比较无显著差异。饥饿4、5d的仔鱼显示部分补偿生长,恢复投喂只少量减轻了饥饿的影响,平均终体重与对照组相比存在显著差异。饥饿1、2、3d的仔鱼和4、5d的仔鱼在恢复投喂后分别需要1—2d和4d时间才能达到与对照组无显著差异水平。仔鱼生长率变动范围从0.59%到8.00%WW/day,仔鱼RNA/DNA比率、RNA/蛋白质比率与生长率的回归方程为:GR=3.63RNA/DNA 1.74(R2=0.80)和GR=120.14RNA/Protein 2.33(R2=0.31),两种比率均与生长率呈显著线性相关,RNA/DNA比率对生长变化的拟合度更好。结果表明,仔鱼阶段食物缺乏很可能是影响岩原鲤仔鱼存活、生长的主要因素。RNA/DNA更适合作为评定岩原鲤仔鱼营养条件和生长的指标。  相似文献   

19.
1. The total nucleic acid synthesized by normal and by infected S. muscae suspensions is approximately the same. This is true for either lag phase cells or log phase cells. 2. The amount of nucleic acid synthesized per cell in normal cultures increases during the lag period and remains fairly constant during log growth. 3. The amount of nucleic acid synthesized per cell by infected cells increases during the whole course of the infection. 4. Infected cells synthesize less RNA and more DNA than normal cells. The ratio of RNA/DNA is larger in lag phase cells than in log phase cells. 5. Normal cells release neither ribonucleic acid nor desoxyribonucleic acid into the medium. 6. Infected cells release both ribonucleic acid and desoxyribonucleic acid into the medium. The time and extent of release depend upon the physiological state of the cells. 7. Infected lag phase cells may or may not show an increased RNA content. They release RNA, but not DNA, into the medium well before observable cellular lysis and before any virus is liberated. At virus liberation, the cell RNA content falls to a value below that initially present, while DNA, which increased during infection falls to approximately the original value. 8. Infected log cells show a continuous loss of cell RNA and a loss of DNA a short time after infection. At the time of virus liberation the cell RNA value is well below that initially present and the cells begin to lyse.  相似文献   

20.
Abstract— A newly described method for the isolation of morphologically intact neurons from newborn rat brain was used to study the influence of inhibitors and neuroactive substances on RNA and protein synthesis in these cells in vitro . Incorporation of [14C]-uridine into RNA and [3H]leucine into protein proceeded rapidly and continued up to 3 h. When the incorporation mixture was chased at 20 min with an excess of nonradioactive uridine and leucine, hardly any degradation of labelled RNA was noted during the following 2 h 40 min. In contrast, the specific radioactivity of proteins decreased by 22 per cent indicating turnover of cellular proteins.
Incorporation of labelled leucine into protein was markedly inhibited in the presence of NaF and cycloheximide but not affected in the presence of chloramphenicol or pancreatic RNase. A mixture of ATP + GTP depressed the incorporation by 38 per cent. The responses to ATP + GTP and RNase indicated that the incorporation system was typically cellular. Acetylcholine, γ-aminobutyrate, noradrenaline and phenylalanine in the incubation medium depressed the incorporation of labelled uridine into RNA by 10–30 per cent and 5-hydroxytryptamine by 75 per cent. Acetylcholine, γ-aminobutyrate and noradrenaline had no effect on protein synthesis, while 5-hydroxytryptamine and phenylalanine inhibited the incorporation by 60–80 per cent. Testosterone and prednisolone depressed both RNA and protein synthesis while thyroxine caused slight but non-significant stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号