首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
Although the corpus luteum (CL) is not known as a target tissue for thyrotropin (TSH), this hormone increases progesterone production by porcine luteal cells cultured in vitro. In this study we investigated the optimal conditions for TSH-stimulated progesterone secretion as well as the involvement of protein kinase A (PKA) and protein kinase C (PKC) in the mechanism of TSH action on porcine luteal cells. To study the PKA and PKC signaling mechanisms, luteal cells collected from mature CL were incubated with the inhibitor of PKA and potent activators of both kinases: PKA-forskolin and PKC-phorbol ester 12-myriistate-13-acetate (PMA). The PKA inhibitor totally suppressed progesterone production in TSH alone, forskolin alone and in TSH plus forskolin-stimulated luteal cells. Forskolin increased basal (P < 0.05) and TSH-stimulated (P < 0.05) progesterone secretion and cAMP accumulation (P < 0.05). Forskolin and PMA added together to control (non-TSH-treated) luteal cells had an additive effect on progesterone production. In TSH-treated cells, the effect of PMA was statistically significant but did not show an additive effect with forskolin. Further PMA did not affect cAMP accumulation in control and TSH-treated luteal cells. Treatment of control and TSH-treated luteal cells with forskolin and PMA together showed the same increase in cAMP accumulation as with forskolin alone. This is the first demonstration that TSH acts on luteal cell steroidogenesis by activation of the cAMP/PKA second messenger system and also that the PKC signaling pathway may be involved in luteal TSH action on the corpus luteum.  相似文献   

3.
4.
Inhibition of osteoblast-mediated mineralization is one of the major catabolic effects of parathyroid hormone (PTH) on bone. Previously, we showed that PTH induces matrix gamma-carboxyglutamic acid (Gla) protein (MGP) expression and established that this induction is critical for PTH-mediated inhibition of osteoblast mineralization. In the present study, we focus on the mechanism through which PTH regulates MGP expression in osteoblastic MC3T3-E1 cells. Following transient transfection of these cells with a -748 bp murine MGP promoter-luciferase construct (pMGP-luc), PTH (10 (-7) M) induced promoter activity in a time-dependent manner with a maximal four- to six fold induction seen 6 h after PTH treatment. Both H-89 (PKA inhibitor) and U0126 (MEK inhibitor), suppressed PTH induction of MGP promoter activity as well as the MGP mRNA level. In addition, forskolin (PKA activator) stimulated MGP promoter activity and mRNA levels confirming that PKA is one of the signaling molecules required for regulation of MGP by PTH. Co-transfection of MC3T3-E1 cells with pMGP-luc and MEK(SP), a plasmid encoding the constitutively active form of MEK, led to a dose-dependent increase in MGP promoter activity. Both MGP promoter activity and MGP mRNA level were not affected by the protein kinase C (PKC) inhibitor, GF109203X. However, phorbol 12-myristate 13-acetate (PMA), a selective PKC activator induced MGP mRNA expression through activation of extracellular signal-regulated kinase (ERK). Taken together, these results indicate that PTH regulates MGP via both PKA- and ERK-dependent pathways.  相似文献   

5.
The involvement of protein kinase C (PKC) and protein kinase A (PKA) in cholinergic signalling in CHO cells expressing the M3 subtype of the muscarinic acetylcholine receptor was examined. Muscarinic signalling was assessed by measuring carbachol-induced activation of phospholipase C (PLC), arachidonic acid release, and calcium mobilisation. Carbachol activation of PLC was not altered by inhibition of PKC with chelerythrine chloride, bisindolylmaleimide or chronic treatment with phorbol myristate acetate (PMA). Activation of PKC by acute treatment with PMA was similarly without effect. In contrast, inhibition of PKC blocked carbachol stimulation of arachidonic acid release. Likewise, PKC inhibition resulted in a decreased ability of carbachol to mobilise calcium, whereas PKC activation potentiated calcium mobilisation. Inhibition of PKA with H89 or Rp-cAMP did not alter the ability of carbachol to activate PLC. Similarly, PKA activation with Sp-cAMP or forskolin had no effect on PLC stimulation by carbachol. Carbachol-mediated release of arachidonic acid was decreased by H89 but only slightly increased by forskolin. Forskolin also increased calcium mobilisation by carbachol. These results suggest a function for PKC and PKA in M3 stimulation of arachidonic acid release and calcium mobilisation but not in PLC activation.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Effects of protein kinase C on protein stability and activity of rat AANAT were investigated in vitro and in vivo. When COS-7 cells transfected with AANAT cDNA were treated with phorbol 12-myristate 13-acetate (PMA), both the activity and protein level of AANAT were increased. These effects of PMA were blocked by GF109203X, a specific inhibitor of PKC. Moreover, PMA increased the phosphorylation of AANAT and induced the formation of AANAT/14-3-3zeta complex. PMA did not affect the basal level of cAMP and did not involve the potentiation of the cAMP production by forskolin, indicating that PKC-dependent activation of adenylyl cyclase was excluded in transfected COS-7 cells. To identify which amino acids were phosphorylated by PKC, several conserved Thr and Ser residues in AANAT were targeted for site-directed mutagenesis. Mutations of Thr29 and Ser203 prevented the increase of enzymatic activity and protein level mediated by PMA. To explore the nature of AANAT phosphorylation, purified rat AANAT was subjected to in vitro PKC kinase assay. PKC directly phosphorylated the rat recombinant AANAT. The phosphopeptides identified by mass spectrometric analysis, and western blotting indicated that Thr29 was one of target sites for PKC. To confirm the effects of the physiological activation of PKC, rat pineal glands were treated with alpha(1)-adrenergic specific agonist phenylephrine. Phenylephrine caused the phosphorylation of endogenous AANAT whereas GF109203X or prazosin, an alpha(1)-adrenergic-specific antagonist, markedly inhibited it. These results suggest that AANAT was phosphorylated at Thr29 by PKC activation through the alpha(1)-adrenergic receptor in rat pineal glands, and that its phosphorylation might contribute to the stability and the activity of AANAT.  相似文献   

13.
14.
The functional role of mitogen-activated protein kinase (MAPK) signaling and c-Jun induction in phorbol 12-myristate 13-acetate (PMA)-induced human 12(S)-lipoxygenase gene expression was studied in human epidermoid carcinoma A431 cells. Among the family of MAPK, PMA only increased the activity of extracellular signal-regulated kinase (ERK). Treatment of cells with PD98059, which is an inhibitor of mitogen-activated protein kinase kinase (MEK), decreased the PMA-induced expression of 12(S)-lipoxygenase. Transfection of cells with Ras, Raf and ERK2 dominant negative mutants inhibited the PMA-induced promoter activation of the 12(S)-lipoxygenase gene in all cases. PMA-induced expression of c-Jun was inhibited by pretreatment with PD98059. Following treatment with PMA, the interaction between c-Jun and simian virus 40 promoter factor 1 (Sp1) in cells increased with time. Enhancement of binding between the c-Jun-Sp1 complex and the Sp1 oligonucleotide was observed in cells treated with PMA, suggesting the possible interaction of c-Jun-Sp1 with GC-rich binding sites in the gene promoter. These results indicate that PMA treatment induced ERK activation mainly through the Raf-MEK-ERK signaling pathway following induction of c-Jun expression, and the formation of the c-Jun-Sp1 complex. Finally, PMA activated the promoter activity of the 12(S)-lipoxygenase gene in cells overexpressing protein kinase C (PKC)delta but not PKCalpha, indicating that PKCdelta played the functional role in mediating the gene activation of 12(S)-lipoxygenase induced by PMA.  相似文献   

15.
The mechanisms by which phorbol 12-myristate 13-acetate (PMA) and cAMP attenuate the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns 4,5-P2) induced by ligation of the T-cell antigen receptor complex (TCR) was studied in the human Jurkat T-cell line. It has previously been shown that stimulation of Jurkat cells with antibodies to CD3, components of the TCR, elicits a rapid and transient phosphorylation of phospholipase C (PLC)-gamma 1, the predominant PLC isozyme in Jurkat cells, at multiple tyrosine residues and that such tyrosine phosphorylation leads to activation of PLC-gamma 1. Prior incubation of Jurkat cells with PMA or forskolin, which increases intracellular cAMP concentrations, prevented tyrosine phosphorylation of PLC-gamma 1 as well as the hydrolysis of PtdIns 4,5-P2 induced by ligation of CD3. Dose-response curves of PMA and of forskolin for the inhibition of PLC-gamma 1 tyrosine phosphorylation and of PtdIns 4,5-P2 hydrolysis were similar. These results suggest that the inhibition of PtdIns 4,5-P2 hydrolysis by PMA and cAMP is attributable to reduced tyrosine phosphorylation of PLC-gamma 1. Treatment of Jurkat cells with PMA or forskolin stimulated the phosphorylation of PLC-gamma 1 at serine 1248. PMA treatment also elicited the phosphorylation of PLC-gamma 1 at an unidentified serine site. Phosphopeptide map analysis indicated that the sites of PLC-gamma 1 phosphorylated in Jurkat cells treated with PMA and forskolin are the same as those phosphorylated in vitro by protein kinase C (PKC) and cAMP-dependent protein kinase (PKA), respectively. Stimulation of Jurkat cells with antibodies to CD3 also elicited phosphorylation of PLC-gamma 1 at serine 1248 and at the unidentified serine site phosphorylated in PLC-gamma 1 from PMA-treated cells. Thus, phosphorylation of PLC-gamma 1 by PKC or PKA at serine 1248 may modulate the interaction of PLC-gamma 1 with the protein tyrosine kinase or the protein tyrosine phosphatase; this altered interaction may, at least in part, be responsible for the decreased tyrosine phosphorylation of PLC-gamma 1 seen in PMA- and forskolin-treated Jurkat cells. Furthermore, in the absence of PMA, activation of PKC by diacylglycerol provides a negative feedback signal responsible for reducing the phosphotyrosine contents of PLC-gamma 1.  相似文献   

16.
Sustaining epinephrine‐elicited behavioral and physiological responses during stress requires replenishment of epinephrine stores. Egr‐1 and Sp1 contribute by stimulating the gene encoding the epinephrine‐synthesizing enzyme, phenylethanolamine N‐methyltransferase (PNMT), as shown for immobilization stress in rats in adrenal medulla and for hypoxic stress in adrenal medulla‐derived PC12 cells. Hypoxia (5% O2) also activates hypoxia inducible factor (HIF) 1α, increasing mRNA, nuclear protein and nuclear protein/hypoxia response element binding complex formation. Hypoxia and HIF1α over‐expression also elevate PNMT promoter‐driven luciferase activity in PC12 cells. Hypoxia may be limiting as HIF1α over‐expression increases luciferase expression to no greater extent than oxygen reduction alone. HIF1α inducers CoCl2 or deferoxamine elevate luciferase as well. PC12 cells harboring a HIF1α expression construct show markedly higher levels of Egr‐1 and Sp1 mRNA and nuclear protein and PNMT mRNA and cytoplasmic protein. Inactivation of Egr‐1 and Sp1 binding sites in the proximal ?893 bp of PNMT promoter precludes HIF1α stimulation while a potential hypoxia response element (?282 bp) in the promoter shows weak HIF1α affinity at best. These findings are the first to suggest that hypoxia activates the proximal rat PNMT promoter primarily via HIF1α induction of Egr‐1 and Sp1 rather than by co‐activation by Egr‐1, Sp1 and HIF1α. In addition, the rise in HIF1α protein leading to Egr‐1 and Sp1 stimulation of PNMT appears to include HIF1α gene activation rather than simply prevention of HIF1α proteolytic degradation.  相似文献   

17.
18.
19.
Abstract: Incubation of rat pheochromocytoma PC12 cells with 4β-phorbol-12β-myristate-13α-acetate (PMA), an activator of Ca2+/phospholipid-dependent protein kinase (protein kinase C), or forskolin, an activator of adenylate cyclase, is associated with increased activity and enhanced phosphorylation of tyrosine hydroxylase. Neither the activation nor increased phosphorylation of tyrosine hydroxylase produced by PMA is dependent on extracellular Ca2+. Both activation and phosphorylation of the enzyme by PMA are inhibited by pretreatment of the cells with trifluo-perazine (TFP). Treatment of PC 12 cells with l-oleoyl-2-acetylglycerol also leads to increases in the phosphorylation and enzymatic activity of tyrosine hydroxylase; 1, 2-diolein and 1, 3-diolein are ineffective. The effects of forskolin on the activation and phosphorylation of the enzyme are independent of Ca2+ and are not inhibited by TIT5. Forskolin elicits an increase in cyclic AMP levels in PC 12 cells. The increases in both cyclic AMP content and the enzymatic activity and phosphorylation of tyrosine hydroxylase following exposure of PC 12 cells to different concentrations of forskolin are closely correlated. In contrast, cyclic AMP levels do not increase in cells treated with PMA. Tryptic digestion of the phosphorylated enzyme isolated from untreated cells yields four phosphopeptides separable by HPLC. Incubation of the cells in the presence of the Ca2+ ionophore ionomycin increases the phosphorylation of three of these tryptic peptides. However, in cells treated with either PMA or forskolin, there is an increase in the phosphorylation of only one of these peptides derived from tyrosine hydroxylase. The peptide phosphorylated in PMA-treated cells is different from that phosphorylated in forskolin-treated cells. The latter peptide is identical to the peptide phosphorylated in dibutyryl cyclic AMP-treated cells. These results indicate that tyrosine hydroxylase is activated and phosphorylated on different sites in PC 12 cells exposed to PMA and forskolin and that phosphorylation of either of these sites is associated with activation of tyrosine hydroxylase. The results further suggest that cyclic AMP-dependent and Ca2+/ phospholipid-dependent protein kinases may play a role in the regulation of tyrosine hydroxylase in PC 12 cells.  相似文献   

20.
Many studies have shown that protein kinase C (PKC) is an important physiological regulator of phospholipase D (PLD). However, the role of PKC in agonist-induced PLD activation has been mainly investigated with a focus on the PLD1, which is one of the two PLD isoenzymes (PLD1 and PLD2) cloned to date. Since the expression of PLD2 significantly enhanced phorbol 12-myristate 13-acetate (PMA)- or bradykinin-induced PLD activity in rat pheochromocytoma PC12 cells, we investigated the regulatory mechanism of PLD2 in PC12 cells. Two different PKC inhibitors, GF109203X and Ro-31-8220, completely blocked PMA-induced PLD2 activation. In addition, specific inhibition of PKC delta by rottlerin prevented PLD2 activation in PMA-stimulated PC12 cells. Concomitant with PLD2 activation, PLD2 became phosphorylated upon PMA or bradykinin treatment of PC12 cells. Moreover, rottlerin blocked PMA- or bradykinin-induced PLD2 phosphorylation in PC12 cells. Expression of a kinase-deficient mutant of PKC delta using adenovirus-mediated gene transfer inhibited the phosphorylation and activation of PLD2 induced by PMA in PC12 cells, suggesting the phosphorylation-dependent regulation of PLD2 mediated by PKC delta kinase activity in PC12 cells. PKC delta co-immunoprecipitated with PLD2 from PC12 cell extracts, and associated with PLD2 in vitro in a PMA-dependent manner. Phospho-PLD2 immunoprecipitated from PMA-treated PC12 cells and PLD2 phosphorylated in vitro by PKC delta were resolved by two-dimensional phosphopeptide mapping and compared. At least seven phosphopeptides co-migrated, indicating the direct phosphorylation of PLD2 by PKC delta inside the cells. Immunocytochemical studies of PC12 cells revealed that after treatment with PMA, PKC delta was translocated from the cytosol to the plasma membrane where PLD2 is mainly localized. These results suggest that PKC delta-dependent direct phosphorylation plays an important role in the regulation of PLD2 activity in PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号