首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two of the three known metabolic pathways to serine and glycine have been shown to be present in prototrophic yeast strains, i.e., the phosphorylated pathway from glycolytic intermediates and the glyoxylate pathway from tricarboxylic acid cycle intermediates. Two serine-glycine auxotrophs (ser1 and ser2) were found to be blocked in the phosphoglycerate pathway. The ser1 gene controls l-glutamate:phosphohydroxypyruvate transaminase biosynthesis, and the ser2 gene controls phosphoserine phosphatase biosynthesis. The other pathway to glycine, from isocitrate, is repressed by growth in glucose media, specifically, at isocitrate lyase and at the alanine:glyoxylate transaminase. This pathway is derepressed by growth to stationary phase in glucose media yielding high activity of these enzymes. The phosphorylated pathway appears to be the principal biosynthetic pathway to serine and glycine during growth on sugar media. Strains which are serine-glycine dependent in glucose media became capable of serine-glycine independent growth on acetate media. These results describe a method of physiological control of a secondary metabolic pathway allowing a single lesion in the principal biosynthetic pathway to produce auxotrophy. This may be termed conditional auxotrophy.  相似文献   

2.
Two strains of Klebsiella (SM6 and SM11) were isolated from rhizospheric soil that solubilized mineral phosphate by secretion of oxalic acid from glucose. Activities of enzymes for periplasmic glucose oxidation (glucose dehydrogenase) and glyoxylate shunt (isocitrate lyase and glyoxylate oxidase) responsible for oxalic acid production were estimated. In presence of succinate, phosphate solubilization was completely inhibited, and the enzymes glucose dehydrogenase and glyoxylate oxidase were repressed. Significant activity of isocitrate lyase, the key enzyme for carbon flux through glyoxylate shunt and oxalic acid production during growth on glucose suggested that it could be inducible in nature, and its inhibition by succinate appeared to be similar to catabolite repression.  相似文献   

3.
The effects of the isocitrate lyase-directed growth inhibitor itaconate on the growth of certain methylotrophic organisms was investigated. It was found that growth of those organisms possessing the Icl(+)-serine pathway of one-carbon metabolism was inhibited during growth on methylamine and on acetate, but not on glucose. Organisms possessing the Icl(-)-serine pathway pathway were unaffected. Organism PAR, an Icl(-)-serine pathway type, was not specifically inhibited during growth on acetate. This finding further substantiates previous reports of the lack of isocitrate lyase in this organism, indicating a totally new pathway for acetate assimilation.  相似文献   

4.
It has been proposed that during growth under anaerobic or oxygen-limited conditions, Shewanella oneidensis MR-1 uses the serine-isocitrate lyase pathway common to many methylotrophic anaerobes, in which formaldehyde produced from pyruvate is condensed with glycine to form serine. The serine is then transformed through hydroxypyruvate and glycerate to enter central metabolism at phosphoglycerate. To examine its use of the serine-isocitrate lyase pathway under anaerobic conditions, we grew S. oneidensis MR-1 on [1-13C]lactate as the sole carbon source, with either trimethylamine N-oxide (TMAO) or fumarate as an electron acceptor. Analysis of cellular metabolites indicated that a large percentage (>70%) of lactate was partially oxidized to either acetate or pyruvate. The 13C isotope distributions in amino acids and other key metabolites indicate that under anaerobic conditions, although glyoxylate synthesized from the isocitrate lyase reaction can be converted to glycine, a complete serine-isocitrate pathway is not present and serine/glycine is, in fact, oxidized via a highly reversible degradation pathway. The labeling data also suggest significant activity in the anapleurotic (malic enzyme and phosphoenolpyruvate carboxylase) reactions. Although the tricarboxylic acid (TCA) cycle is often observed to be incomplete in many other anaerobes (absence of 2-oxoglutarate dehydrogenase activity), isotopic labeling supports the existence of a complete TCA cycle in S. oneidensis MR-1 under certain anaerobic conditions, e.g., TMAO-reducing conditions.  相似文献   

5.
1. The effects of glyoxylate on partially purified preparations of aconitate hydratase, isocitrate dehydrogenase and oxoglutarate dehydrogenase were compared with those of oxalomalate and hydroxyoxoglutarate (obtained by condensation of glyoxylate with oxaloacetate and pyruvate respectively). 2. Glyoxylate (1mm) did not affect aconitate hydratase and isocitrate dehydrogenase, whereas oxalomalate (1mm) inhibited the enzyme activities completely. 3. Glyoxylate (0.025mm) inhibited oxoglutarate dehydrogenase irreversibly, whereas the same concentrations of oxalomalate and hydroxyoxoglutarate were ineffective. This inhibitory effect was prevented if oxoglutarate, pyruvate or oxaloacetate was mixed with the enzyme before the glyoxylate. 4. Incubation of oxoglutarate dehydrogenase with radioactive glyoxylate produced radioactive carbon dioxide; radioactivity was also recovered in the portion of the enzyme identified with thiamin pyrophosphate. 5. The behaviour of glyoxylate in producing multiple inhibitions of the citric acid cycle, either by direct interaction with oxoglutarate dehydrogenase, or by means of its condensation compounds which inhibit aconitate hydratase and isocitrate dehydrogenase, is discussed.  相似文献   

6.
Growth of Arthrobacter atrocyaneus and A. pyridinolis on certain growth substrates was found to be inhibited by pyruvate and compounds which can be converted to pyruvate. Growth of A. atrocyaneus on acetate, for example, was completely inhibited by 5 mm pyruvate; growth of this organism on glucose was less sensitive and growth on succinate was insensitive to inhibition by pyruvate. Growth of a third Arthrobacter species, A. crystallopoietes, on acetate and other substrates was not inhibited by pyruvate. The site of pyruvate inhibition was shown to be the isocitrate lyase reaction. Glyoxylate, which affords a bypass of this reaction, restored the ability of A. atrocyaneus to evolve (14)CO(2) from acetate in the presence of pyruvate. The isocitrate lyases from A. atrocyaneus and A. pyridinolis were competitively inhibited by concentrations of pyruvate as low as 1 mm, whereas the enzyme from A. crystallopoietes was unaffected by this concentration of pyruvate. Comparable levels of phosphoenolpyruvate did not inhibit the isocitrate lyases from any of the species. A mutant strain of A. atrocyaneus, PW11, which is deficient in isocitrate lyase activity, grew on glucose at a reduced rate that was comparable to the rate of growth of the wild-type strain on glucose plus lactate. Addition of lactate to PW11 did not further reduce its rate of growth on glucose. Thus, the glyoxylate pathway appears to be used as an anaplerotic pathway during growth of A. atrocyaneus on glucose. Two other considerations suggest that A. atrocyaneus and A. pyridinolis, but not A. crystallopoietes, may be deficient in the ability to convert pyruvate to 4-carbon acids. First, the former two species accumulate intracellular pyruvate from exogenous l-alanine to a much greater extent than does A. crystallopoietes. Moreover, A. atrocyaneus and A. pyridinolis are incapable of growth on lactate as sole source of carbon whereas A. crystallopoietes can grow on lactate.  相似文献   

7.
The pathway of degradation of nitrilotriacetate (NTA) was determined by using cell-free extracts and a 35-fold purification of NTA monooxygenase. The first step in the breakdown was an oxidative cleavage of the tertiary amine by the monooxygenase to form the aldo acid, glyoxylate, and the secondary amine, iminodiacetate (IDA). NTA N-oxide acted as a substrate analog for induction of the monooxygenase and was slowly metabolized by the enzyme, but was not an intermediate in the pathway. No intermediate before IDA was found, but an unstable alpha-hydroxy-NTA intermediate was postulated. IDA did undergo cleavage in the presence of the purified monooxygenase to give glyoxylate and glycine, but was not metabolized in cell-free extracts. Glyoxylate was further metabolized by cell-free extracts to yield CO2 and glycerate or glycine, products also found from NTA metabolism. Of the three bacterial isolates in which the NTA pathway has been studied, two strains, one isolated from a British soil and ours from a Michigan soil, appear to be almost identical.  相似文献   

8.
In Colletotrichum lagenarium, which is the causal agent of cucumber anthracnose, PEX6 is required for peroxisome biogenesis and appressorium-mediated infection. To verify the roles of peroxisome-associated metabolism in fungal pathogenicity, we isolated and functionally characterized ICL1 of C. lagenarium, which encodes isocitrate lyase involved in the glyoxylate cycle in peroxisomes. The icl1 mutants failed to utilize fatty acids and acetate for growth. Although Icl1 has no typical peroxisomal targeting signals, expression analysis of the GFP-Icl1 fusion protein indicated that Icl1 localizes in peroxisomes. These results indicate that the glyoxylate cycle that occurs inside the peroxisome is required for fatty acid and acetate metabolism for growth. Importantly, in contrast with the pex6 mutants that form nonmelanized appressoria, the icl1 mutants formed appressoria that were highly pigmented with melanin, suggesting that the glyoxylate cycle is not essential for melanin biosynthesis in appressoria. However, the icl1 mutants exhibited a severe reduction in virulence. Appressoria of the icl1 mutants failed to develop penetration hyphae in the host plant, suggesting that ICL1 is involved in host invasion. The addition of glucose partially restored virulence of the icl1 mutant. Heat shock treatment of the host plant also enabled the icl1 mutants to develop lesions, implying that the infection defect of the icl1 mutant is associated with plant defense. Together with the requirement of PEX6 for appressorial melanization, our findings suggest that peroxisomal metabolic pathways play functional roles in appressorial melanization and subsequent host invasion steps, and the latter step requires the glyoxylate cycle.  相似文献   

9.
The growth and product formation of Saccharomyces kluyveri was characterized in aerobic batch cultivation on glucose. At these conditions it was found that ethyl acetate was a major overflow metabolite in S. kluyveri. During the exponential-growth phase on glucose ethyl acetate was produced at a constant specific rate of 0.12 g ethyl acetate per g dry weight per hour. The aerobic glucose metabolism in S. kluyveri was found to be less fermentative than in S. cerevisiae, as illustrated by the comparably low yield of ethanol on glucose (0.08 +/- 0.02 g/g), and high yield of biomass on glucose (0.29 +/- 0.01 g/g). The glucose metabolism of S. kluyveri was further characterized by the new and powerful techniques of metabolic network analysis. Flux distributions in the central carbon metabolism were estimated for respiro-fermentative growth in aerobic batch cultivation on glucose and respiratory growth in aerobic glucose-limited continuous cultivation. It was found that in S. kluyveri the flux into the pentose phosphate pathway was 18.8 mmole per 100 mmole glucose consumed during respiratory growth in aerobic glucose-limited continuous cultivation. Such a low flux into the pentose phosphate pathway cannot provide the cell with enough NADPH for biomass formation which is why the remaining NADPH will have to be provided by another pathway. During batch cultivation of S. kluyveri the tricarboxylic acid cycle was working as a cycle with a considerable flux, that is in sharp contrast to what has previously been observed in S. cerevisiae at the same growth conditions, where the tricarboxylic acid cycle operates as two branches. This indicates that the respiratory system was not significantly repressed in S. kluyveri during batch cultivation on glucose.  相似文献   

10.
The pro/N‐degron pathway is an evolved protein degradation pathway through the ubiquitin‐proteasome system. It is a vital pathway to attain protein homeostasis inside the liver cells with varying glucose levels. N‐terminal proline exists in more than 300 proteins in Saccharomyces cerevisiae, but only three of them are the gluconeogenic enzymes; isocitrate lyase (Icl1), fructose‐1,6‐bisphosphatase (Fbp1), and malate dehydrogenase (Mdh2). The present in silico study aims to structurally illustrate the binding of Icl1 enzyme to Gid4 ligase concerning its peers; Fbp1 and Mdh2. Based on the molecular docking scores and interactions, one can attribute the binding stability of Gid4 with degrons, to peptides of length six up to eight from the N‐terminal. Moreover, the percent change in the docking score provides a rationale for the unique Gid4‐Icl11‐4 interaction. The present study provides insights on the binding attitude of Gid4 ligase to degrons of different lengths, so one will consider in designing peptidomimetics to target Gid4 ligase.  相似文献   

11.
12.
在不同碳源培养条件下酿酒酵母的蛋白质组解析   总被引:4,自引:0,他引:4  
为了分析酿酒酵母在不同培养条件下的代谢调控过程的差异,采用固相pH梯度-SDS聚丙烯酰胺双向凝胶电泳对其利用不同碳源时细胞的总蛋白进行了分离,银染显色,使用2D蛋白质图像分析系统Image Master-2D Elite对双向电泳图谱进行分析,查询SWISS-2D-PAGE蛋白质组数据库,识别了约500个蛋白质点。对与糖酵解途径、磷酸戊糖途径、三羧酸循环和几种回补反应相关的大部分关键的蛋白质进行了差异分析。探讨了酿酒酵母利用不同碳源时及生长的不同阶段代谢机理的变化和在蛋白质水平的调控。  相似文献   

13.
Two genes YER081W and YIL074C, renamed SER3 and SER33, respectively, which encode phosphoglycerate dehydrogenases in Saccharomyces cerevisiae were identified. These dehydrogenases catalyze the first reaction of serine and glycine biosynthesis from the glycolytic metabolite 3-phosphoglycerate. Unlike either single mutant, the ser3Delta ser33Delta double mutant lacks detectable phosphoglycerate dehydrogenase activity and is auxotrophic for serine or glycine for growth on glucose media. However, the requirement for the SER-dependent "phosphoglycerate pathway" is conditional since the "glyoxylate" route of serine/glycine biosynthesis is glucose-repressed. Thus, in cells grown on ethanol both expression and activity of all SER-encoded proteins are low, including the remaining enzymes of the phosphoglycerate pathway, Ser1p and Ser2p. Moreover the available nitrogen source regulates the expression of SER genes. However, for only SER33, and not SER3, expression was regulated in relation to the available nitrogen source in a coordinated fashion with SER1 and SER2. Based on these mRNA data together with data on enzyme activities, Ser33p is likely to be the main isoenzyme of the phosphoglycerate pathway during growth on glucose. Moreover, since phosphoglycerate dehydrogenase activity requires NAD(+) as cofactor, deletion of SER3 and SER33 markedly affected redox metabolism as shown by substrate and product analysis.  相似文献   

14.
In the facultative autotrophic organism Chloroflexus aurantiacus, a phototrophic green nonsulfur bacterium, the Calvin cycle does not appear to be operative in autotrophic carbon assimilation. An alternative cyclic pathway, the 3-hydroxypropionate cycle, has been proposed. In this pathway, acetyl coenzyme A (acetyl-CoA) is assumed to be converted to malate, and two CO(2) molecules are thereby fixed. Malyl-CoA is supposed to be cleaved to acetyl-CoA, the starting molecule, and glyoxylate, the carbon fixation product. Malyl-CoA cleavage is shown here to be catalyzed by malyl-CoA lyase; this enzyme activity is induced severalfold in autotrophically grown cells. Malate is converted to malyl-CoA via an inducible CoA transferase with succinyl-CoA as a CoA donor. Some enzyme activities involved in the conversion of malonyl-CoA via 3-hydroxypropionate to propionyl-CoA are also induced under autotrophic growth conditions. So far, no clue as to the first step in glyoxylate assimilation has been obtained. One possibility for the assimilation of glyoxylate involves the conversion of glyoxylate to glycine and the subsequent assimilation of glycine. However, such a pathway does not occur, as shown by labeling of whole cells with [1,2-(13)C(2)]glycine. Glycine carbon was incorporated only into glycine, serine, and compounds that contained C(1) units derived therefrom and not into other cell compounds.  相似文献   

15.
Alanine: glyoxylate aminotransferase (EC 2.6.1.44), which is involved in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates in Saccharomyces cerevisiae, was highly purified and characterized. The enzyme had Mr about 80 000, with two identical subunits. It was highly specific for L-alanine and glyoxylate and contained pyridoxal 5'-phosphate as cofactor. The apparent Km values were 2.1 mM and 0.7 mM for L-alanine and glyoxylate respectively. The activity was low (10 nmol/min per mg of protein) with glucose as sole carbon source, but was remarkably high with ethanol or acetate as carbon source (930 and 430 nmol/min per mg respectively). The transamination of glyoxylate is mainly catalysed by this enzyme in ethanol-grown cells. When glucose-grown cells were incubated in medium containing ethanol as sole carbon source, the activity markedly increased, and the increase was completely blocked by cycloheximide, suggesting that the enzyme is synthesized de novo during the incubation period. Similarity in the amino acid composition was observed, but immunological cross-reactivity was not observed among alanine: glyoxylate aminotransferases from yeast and vertebrate liver.  相似文献   

16.
1. Micrococcus denitrificans utilized glycollate as sole carbon source for aerobic growth. Glyoxylate was utilized less well, and though glycine alone did not support growth it enhanced growth on glyoxylate. 2. During growth on glycollate, 14C was incorporated from [2-14C]glycollate into glycine and thence into aspartate, malate and glutamate. No phosphoglycerate was labelled at the earliest times. 3. Glyoxylate was the first product of glycollate utilization, and glycollate oxidase was inducibly formed on transfer of the organism to glycollate-containing media. 4. Extracts of glycollate-grown M. denitrificans contained negligible glyoxylate-carboligase activity and only low tartronate semialdehyde-reductase activity. 5. erythro-β-Hydroxyaspartate is a key intermediate in glyoxylate utilization by this organism. Enzymes catalysing (a) the synthesis of erythro-β-hydroxyaspartate from glyoxylate and glycine, and (b) the conversion of erythro-β-hydroxyaspartate into oxaloacetate, were inducibly formed during growth on glycollate and on other substrates yielding glyoxylate. Methods for the assay of these enzymes were developed. 6. It is concluded that in M. denitrificans the biosynthesis of cell materials from glycollate is accomplished by the `β-hydroxyaspartate pathway', a novel metabolic route that may also perform a catabolic role in glyoxylate oxidation.  相似文献   

17.
Glyoxylate is a 2 carbon aldo acid that is formed in hepatic tissue from glycolate. Once formed, the molecule can be converted to glycine by alanine-glyoxylate aminotransferase (AGAT). In defects of AGAT, glyoxylate is transformed to oxalate, resulting in high levels of oxalate in the body. The objective of this study was 2-fold. First, it was to determine, if akin to D-glucose, D-fructose or DL-glyceraldehyde, glyoxylate was susceptible to non-enzymatic attack by amino containing molecules such as lysine, arginine or glucosamine. Second, if by virtue of its molecular structure and size, glyoxylate was as reactive a reagent in non-enzymatic reactions as DL-glyceraldehyde; i.e., a glycose that we previously demonstrated to be a more effective glycating agent than D-glucose or D-fructose. Using capillary electrophoresis (CE), high performance liquid chromatography and UV and fluorescence spectroscopy, glyoxylate was found to be a highly reactive precursor of advanced glycation like end products (AGLEs) and a more effective promoter of non-enzymatic end products than D-glucose, D-fructose or DL-glyceraldehyde.  相似文献   

18.
1. Extracts of Pseudomonas sp. grown on butane-2,3-diol oxidized glyoxylate to carbon dioxide, some of the glyoxylate being reduced to glycollate in the process. The oxidation of malate and isocitrate, but not the oxidation of pyruvate, can be coupled to the reduction of glyoxylate to glycollate by the extracts. 2. Extracts of cells grown on butane-2,3-diol decarboxylated oxaloacetate to pyruvate, which was then converted aerobically or anaerobically into lactate, acetyl-coenzyme A and carbon dioxide. The extracts could also convert pyruvate into alanine. However, pyruvate is not an intermediate in the metabolism of glyoxylate since no lactate or alanine could be detected in the reaction products and no labelled pyruvate could be obtained when extracts were incubated with [1-14C]glyoxylate. 3. The 14C was incorporated from [1-14C]glyoxylate by cell-free extracts into carbon dioxide, glycollate, glycine, glutamate and, in trace amounts, into malate, isocitrate and α-oxoglutarate. The 14C was initially incorporated into isocitrate at the same rate as into glycine. 4. The rate of glyoxylate utilization was increased by the addition of succinate, α-oxoglutarate or citrate, and in each case α-oxoglutarate became labelled. 5. The results are consistent with the suggestion that the carbon dioxide arises by the oxidation of glyoxylate via reactions catalysed respectively by isocitratase, isocitrate dehydrogenase and α-oxoglutarate dehydrogenase.  相似文献   

19.
Throughout the development (maturation) of mango fruit the contents of citric and glyoxylic acids increased steadily. As the fruit matured the levels of isocitrate lyase, malate lyase and alanine: glyoxylate aminotransferase increased and reached maximum values prior to the time of harvesting. At and after harvest the levels of malate lyase and alanine : glyoxylate aminotransferase began to decrease but that of isocitrate lyase remained high until after the harvest when it decreased. The level of glyoxylate reductase was highest in the early developmental stage but declined as the fruit matured and ripened. As the fruit ripened, after harvest, the amounts of citric and glyoxylic acids decreased concomitant with a considerable increase in the levels of isocitrate dehydrogenase, malic dehydrogenase, malic enzyme and glyoxylate dehydrogenase.Fatty acid oxidizing capacity of mitochondria isolated from immature (developing) and postclimacteric fruit pulps was much less than that observed with mitochondria from preclimacteric and climacteric fruit. Glyoxylate stimulated the oxidation of caprylic, lauric, myristic and palmitic acids and inhibited the activity of isocitrate dehydrogenase in vitro.  相似文献   

20.
Glyoxylate detoxification is an important function of human peroxisomes. Glyoxylate is a highly reactive molecule, generated in the intermediary metabolism of glycine, hydroxyproline and glycolate mainly. Glyoxylate accumulation in the cytosol is readily transformed by lactate dehydrogenase into oxalate, a dicarboxylic acid that cannot be metabolized by mammals and forms tissue-damaging calcium oxalate crystals. Alanine-glyoxylate aminotransferase, a peroxisomal enzyme in humans, converts glyoxylate into glycine, playing a central role in glyoxylate detoxification. Cytosolic and mitochondrial glyoxylate reductase also contributes to limit oxalate production from glyoxylate. Mitochondrial hydroxyoxoglutarate aldolase is an important enzyme of hydroxyproline metabolism. Genetic defect of any of these enzymes of glyoxylate metabolism results in primary hyperoxalurias, severe human diseases in which toxic levels of oxalate are produced by the liver, resulting in progressive renal damage. Significant advances in the pathophysiology of primary hyperoxalurias have led to better diagnosis and treatment of these patients, but current treatment relies mainly on organ transplantation. It is reasonable to expect that recent advances in the understanding of the molecular mechanisms of disease will result into better targeted therapeutic options in the future. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号