首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Follicle stimulating hormone (FSH) is important for controlling spermatogenesis through binding with its receptor. However, little information is available on mutations of the FSH and its receptor gene in infertile men. To study the genetic defects, which caused problems in spermatogenesis, we screened the point mutations of the FSH receptor gene in infertile men with high serum FSH concentrations. Seventy male infertile patients with high FHS levels (> 12 mIU/ml) were screened for mutations in each of the 10 exons of the FSH receptor gene, using genomic DNA PCR and a single-strand conformation polymorphism (SSCP) analysis. From this study, three shifted bands were detected by SSCP. The first shifted band was found in the PCR product of exon 4, including the exon-intron boundary sequence in only one patient. The sequence analysis revealed a nucleotide A to T substitution in intron 3 (IVS3-4A-->T). The second shifted band was detected in exon 10 with high frequency (33%). A nucleotide A to G substitution was found at the position of the 994th nucleotide, predicting a Thr to Ala substitution at the position of the 307th amino acid (Thr307Ala). The third shifted band in the 3' region of exon 10 was detected frequently in infertile patient and normal groups. It was tightly linked to the Thr307Ala variant. Thus, all of the abnormalities represent neutral polymorphisms, and not pathological mutations of the FSH receptor gene. In conclusion, we did not confirm that the genomic mutation of the FSH receptor is a major genetic cause in Korean infertile patients with high FSH levels.  相似文献   

2.
CD36 is a fatty acid translocase in striated muscle cells and cardiomyocytes. Some study suggested that alterations in CD36 gene may be associated with coronary artery disease (CAD) risk. The aim of the current study was to compare the frequency of CD36 variants in region encoding lipid-binding domain in Caucasian patients with early-onset CAD, no-CAD adult controls and neonates. The study group comprised 100 patients with early onset CAD. The genetic control groups were 306 infants and 40 no-CAD adults aged over 70 years. Exons 4, 5 and 6 including fragments of flanking introns were studied using the denaturing high-performance liquid chromatography technique and direct sequencing. Changes detected in analyzed fragment of CD36: IVS3-6 T/C (rs3173798), IVS4-10 G/A (rs3211892), C311T (Thr104Ile, not described so far) in exon 5, G550A (Asp184Asn, rs138897347), C572T (Pro191Leu, rs143150225), G573A (Pro191Pro, rs5956) and A591T (Thr197Thr, rs141680676) in exon 6. No significant differences in the CD36 genotype, allele and haplotype frequencies were found between the three groups. Only borderline differences (p = 0.066) were found between early onset CAD patients and newborns in the frequencies of 591T allele (2.00% vs 0.50%) and CGCGCGT haplotype (2.00% vs 0.50%) with both IVS3-6C and 591T variant alleles. In conclusion, CD36 variants: rs3173798, rs3211892, rs138897347, rs5956, rs143150225 rs141680676 and C311T do not seem to be involved in the risk of early-onset CAD in Caucasian population.  相似文献   

3.
Lin CH  Chen ML  Chen GS  Tai CH  Wu RM 《Human genetics》2011,130(6):817-827
Mutations in the gene encoding the mitochondrial protein high temperature requirement A2 (HTRA2) are inconsistently associated with a risk of Parkinson’s disease (PD). We assessed the presence of HTRA2 mutations among patients with PD and performed functional assay of identified mutations or variants. Among the total 1,373 subjects, the entire HTRA2 coding region was sequenced in 113 early-onset PD (EOPD), 20 familial PD patients and 150 control subjects. An additional 390 sporadic late-onset PD patients and 700 controls were subsequently screened to validate possible mutations found in the first set. We identified two novel heterozygous variants, c.427C > G (Pro143Ala) and c.906 +3 G > A, in 2 (1.5%) EOPD patients. The missense variant, Pro143Ala, was also observed in one late-onset PD patient but was absent in total 850 control subjects (relative risk 2.3, 95% CI 1.5–2.8, P = 0.04). Expressing Pro143Ala variant of HTRA2 in primary dopaminergic neurons causes neurite degeneration. Following exposure to rotenone, the ultra-structural mitochondrial abnormality, the percentage of mitochondrial dysfunction and apoptosis in cells carrying the HTRA2 Pro143Ala variant was significantly higher than wild-type cells. Mechanistically, protein level of phosphorylated HTRA2 was increased in cells carrying the Pro143Ala variant, suggesting Pro143Ala variant promotes HTRA2 phosphorylation with resultant mitochondrial dysfunction. Our results support a biologically relevant role of HTRA2 in PD susceptibility in Taiwanese. Further large-scale association studies are warranted to confirm the role of HTRA2 Pro143Ala variant in the risk of PD.  相似文献   

4.
The highly conserved Pumilio protein plays crucial roles in fertility of many organisms acting as a repressor of translation, and causing infertility when mutated. Although one of two human Pumilio homologs, PUMILIO2 is expressed mainly in the germ line, its role in mammalian germ cell development has not been reported yet. To shed light on the role of PUMILIO2 in development of the human male germ line, we screened this gene for mutations in 137 patients presenting a variety of phenotypes with spermatogenic failure. The first variant, we identified was a single base substitution within intron 15 (IVS15 + 6G > A). This variant was found in three azoospermic males, the second allele being the wild type. However, this variant was also present among fertile males, as frequently as in the patients. Although location of IVS15 + 6G > A substitution in close proximity to the canonical donor splice site GT, indicates that its influence on splicing cannot be excluded, our preliminary cDNA analysis has not revealed evidence of a splicing abnormality of PUMILIO2 pre-mRNA carrying this variant. Nevertheless, this study provides new interesting variant containing a donor splice site variant, which can be relevant for understanding of splicing mechanism of mammalian genes. The second variant, c.774 C > T transversion (Y258Y) in exon 6 was found only in one patient, but an influence on PUMILIO2 function is not obvious. Altogether, this study shows that variation in the PUMILIO2 gene is very low and it seems improbable that mutations of this gene significantly contribute to male infertility in humans.  相似文献   

5.
A novel X-linked mental retardation (XLMR) syndrome was recently identified, resulting from creatine deficiency in the brain caused by mutations in the creatine transporter gene, SLC6A8. We have studied the prevalence of SLC6A8 mutations in a panel of 290 patients with nonsyndromic XLMR archived by the European XLMR Consortium. The full-length open reading frame and splice sites of the SLC6A8 gene were investigated by DNA sequence analysis. Six pathogenic mutations, of which five were novel, were identified in a total of 288 patients with XLMR, showing a prevalence of at least 2.1% (6/288). The novel pathogenic mutations are a nonsense mutation (p.Y317X) and four missense mutations. Three missense mutations (p.G87R, p.P390L, and p.P554L) were concluded to be pathogenic on the basis of conservation, segregation, chemical properties of the residues involved, as well as the absence of these and any other missense mutation in 276 controls. For the p.C337W mutation, additional material was available to biochemically prove (i.e., by increased urinary creatine : creatinine ratio) pathogenicity. In addition, we found nine novel polymorphisms (IVS1+26G-->A, IVS7+37G-->A, IVS7+87A-->G, IVS7-35G-->A, IVS12-3C-->T, IVS2+88G-->C, IVS9-36G-->A, IVS12-82G-->C, and p.Y498) that were present in the XLMR panel and/or in the control panel. Two missense variants (p.V629I and p.M560V) that were not highly conserved and were not associated with increased creatine : creatinine ratio, one translational silent variant (p.L472), and 10 intervening sequence variants or untranslated region variants (IVS6+9C-->T, IVS7-151_152delGA, IVS7-99C-->A, IVS8-35G-->A, IVS8+28C-->T, IVS10-18C-->T, IVS11+21G-->A, IVS12+15C-->T, *207G-->C, IVS12+32C-->A) were found only in the XLMR panel but should be considered as unclassified variants or as a polymorphism (p.M560V). Our data indicate that the frequency of SLC6A8 mutations in the XLMR population is close to that of CGG expansions in FMR1, the gene responsible for fragile-X syndrome.  相似文献   

6.
Inherited mutation of a purine salvage enzyme, hypoxanthine guanine phosphoribosyltransferase (HPRT), gives rise to Lesch-Nyhan Syndrome (LNS) or HPRT-related gout. Here, we report five novel independent mutations in the coding region of the HPRT gene from five unrelated male patients manifesting different clinical phenotypes associated with LNS: exon 2: c.133A > G, p.45R > G; c.35A > C, p.12D > A; c.88delG; exon 7: c.530A > T, p.177D > V; and c.318 + 1G > C: IVS3 + 1G > C splice site mutation.  相似文献   

7.
Osteogenesis imperfecta (OI) is a generalised disorder of connective tissue characterised by an increased fragility of bones and also manifested in other tissues containing collagen type I, by blue sclera, hearing loss, dentinogenesis imperfecta, hyperextensible joints, hernias and easy bruising. OI is dominantly inherited and results in >90% OI cases, caused by mutations in one of the two genes COL1A1 or COL1A2 coding for type I procollagen. The Lithuanian OI database comprises 147 case records covering the period of 1980 - 2001. Clinical and genealogical analysis of OI cases/families from Lithuania available for examination revealed 18 familial cases of OI type I and 22 sporadic cases: OI type II (3 cases), OI type III (11 cases) and OI type I (8 cases). As a result of their molecular genetic investigation, 11 mutations were identified in the COL1A1 gene in 13 unrelated patients. Of them, nine mutations (E500X, G481A, c.2046insCTCTCTAG, c.1668delT, c.1667insC, c.4337insC, IVS19+1G > A, IVS20-2A > G, IVS22-1G > T) appeared to be novel, i.e. not yet registered in the Human Type I and Type III Collagen Mutations Database (http://www.le.ac.uk/genetics/collagen).  相似文献   

8.
Search for mutations in the connexin 26 gene (GJB2) is a routine molecular-genetic analysis ofthe hereditary deafness worldwide. However, till now there is no assessment of the diagnostic significance of this analysis for Russian patients, and there are difficulties in interpretation of the results of DNA diagnostics. In the present study, a sample of 705 patients with nonsyndromic autosomal recessive deafness from different regions of Russian Federation was investigated. A portion of deafness like DFNB1 caused by mutations in the GJB2 gene among the sample was 46%. The frequency of deafness of such genetic type was 1:1000, that is, the frequency of isolated autosomal recessive deafness was 1:500 in the population. It was found that each sixteenth individual in Russia is a heterozygous carrier of the mutation in the GJB2gene. Totally, 20 pathological GJB2 alleles were detected; among them, a c.35delG mutation with the allelic frequency 81% prevails. Six most frequent mutations (c.35delG, c.313_326de114, c.-23+1G>A (IVS1+1G>A), c.235delC, c.167delT, and p.Glul20del), which account for 95% of pathological GJB2 alleles, were detected. Mutations previously not described in the GJB2 gene (c.129delG, p.Gly200Arg, and c[Arg127His, Gly160Ser]) were found. An optimal algorithm of molecular investigation of Russian patients which detects up to 100% of mutations in the GJB2 gene was suggested. Data concerning a clinical significance of p.Met34Thr and p.Va137Ile mutations are confirmed in the study. Eight polymorphic substitutions in the GJB2gene which do not have clinical significance (p.Va127Ile, c.*3C>A, p.Va115311e, p.Gly160Ser, c.Arg127His, p.Glull4Gly (c.341A>G), c.-45C>A, and p.Ala149Thr) were also detected.  相似文献   

9.
10.
11.
The most common monogenic form of obesity is caused by mutations in the gene encoding the melanocortin-4 receptor (MC4R). We have screened the MC4R coding sequence in 291 patients of a Dutch outpatient pediatric obesity clinic. We analyzed the minimal promoter region of the gene in a random subgroup of 217 children. Our aims were (i) to determine the frequency of MC4R mutations in a cohort of Dutch clinically obese children and (ii) to search for mutations in the promoter of the gene. Eleven MC4R coding variants were detected. Five children had mutations that have been shown to affect receptor function by other research groups (p.Y35X, p.I251fs, p.G231S). These children did not have earlier onset of obesity or higher BMI-SDS than the remainder of the cohort. One child had a novel nonsynonymous coding mutation (p.L304F). This variant showed a markedly decreased cell surface expression in in vitro experiments and is thus expected to be pathogenic. We detected 12 variants in the MC4R flanking regions. Five of these were not previously described (c.-1101C>T, c.-705A>T, c.-461A>G, c.-312T>C, c.-213A>G). We investigated these mutations by family studies and a bioinformatic approach. We conclude that rare heterozygous mutations in the coding sequence of MC4R account for some severe obesity cases in the Dutch population. These patients are difficult to recognize in a clinical setting. We generated a list of all MC4R variants that were described in the literature so far, which can aid the interpretation of mutations found in a diagnostic setting.  相似文献   

12.
We evaluated the contribution of germline CDKN2A mutations and MC1R variants to the development of melanoma in a hospital-based study of single (SPM, n = 398) and multiple primary melanoma (MPM, n = 95). The overall frequency of CDKN2A mutations was 15.2%, and four-fold higher in MPM than in SPM cases (OR = 4.27; 95% CI 2.43-7.53). The likelihood of identifying a CDKN2A mutation increased with family history of melanoma and younger age at diagnosis in MPM cases. Compared to SPM patients, the risk of harboring a CDKN2A mutation rose as the number of primary melanomas increased and was not influenced by family history. The G101W and E27X founder mutations were the most common. Several other mutations (W15X, Q50X, R58X, A68L, A127P and H142R) were detected for the first time in Italian patients. One novel mutation, T77A, was identified. Several non-coding variants with unknown functional significance were also found (5'UTR -25C > T, -21C > T, -67G > C, IVS1 +37G > C); the novel 5'UTR -21C > T variant was not detected in controls. The CDKN2A A148T polymorphism was more frequent in MPM patients than in the control population (15.7% versus 6.6%). Compared to the SPM patients, MPM cases had a 2-fold increased probability of being MC1R variant carriers and a higher probability of carrying two or more variants. No specific association was observed between the type of variant and the number of melanomas, suggesting that the number rather than the type of MC1R variant increases the risk of MPM. We observed no interaction between CDKN2A status and the presence of MC1R variants. The high frequency of CDKN2A mutations in our MPM cases, independent of their family history, is of relevance to genetic counseling and testing in our population.  相似文献   

13.
Molecular testing for mutations in the connexin 26 gene (GJB2) is a routine diagnostic analysis for subjects with hereditary hearing loss worldwide. However, till now there is no assessment of the diagnostic significance of this analysis for Russian patients, and there are difficulties in interpretation of the results of DNA diagnostics. In the present study, a sample of 705 patients with nonsyndromic autosomal recessive hearing loss from different regions of Russian Federation was investigated. A portion of DFNB1 hearing loss caused by mutations in the GJB2 gene among the sample was 46%. The frequency of DFNB1 hearing loss was 1:1000, that is, the frequency of isolated autosomal recessive hearing loss 1:500 in the population. It was found that each sixteenth individual in Russia is a heterozygous carrier of the mutation in the GJB2 gene. Totally, 20 pathological GJB2 alleles were detected; among them, a c.35delG mutation with the allelic frequency 81% prevails. Six most frequent mutations (c.35delG, c.313_326del14, c.23+1G>A (IVS1+1G>A), c.235delC, c.167delT, and p.Glu120del), which account for 95% of pathological GJB2 alleles, were detected. Mutations previously not described in the GJB2 gene (c.129delG, p.Gly200Arg, and c[Arg127His, Gly160Ser]) were found. An optimal algorithm of molecular testing of Russian patients which detects up to 100% of mutations in the GJB2 gene was suggested. Data concerning a clinical significance of p.Met34Thr and p.Val37Ile mutations are confirmed in the study. Eight polymorphic substitutions in the GJB2 gene which do not have clinical significance (p.Val27Ile, c.*3C>A, p.Val153Ile, p.Gly160Ser, c.Arg127His, p.Glu114Gly (c.341A>G), c.-45C>A, and p.Ala149Thr) were also detected.  相似文献   

14.
Objective: Based on onset-age stratified analysis may be useful to determine the association of NeuroD1-Ala45Thr variation with susceptibility to genetic heterogeneous type 2 diabetes mellitus (T2DM), we investigated the Ala45Thr variation in unrelated early-onset and late-onset T2DM with or without diabetic pedigree and unrelated non-diabetic control subjects in Chinese. Methods: 175 early-onset and 194 late-onset type 2 diabetic patients were further divided into two subgroups according to with or without diabetic pedigree respectively. This NeuroD1-Ala45Thr variation were screened by PCR-direct sequencing in above 369 type 2 diabetic patients and 87 unrelated non-diabetic control subjects. We then compared the distribution of the Ala45Thr variation among the groups, searching for the predictive trends. Results: Frequencies of the variant (AA + GA genotype) in early-onset T2DM are obviously elevated, especially among diabetic pedigree subjects when compared to non-diabetic controls (p= 0.003) and late-onset T2DM subjects (p = 0.014). However, no significant differences were observed between late-onset T2DM with or without diabetic pedigree and non-diabetic control subjects. Conclusions: Our results suggest that 1) the NeuroD1-Ala45Thr variation may itself have an important role in susceptibility to or be in disequilibrium with early-onset T2DM in Chinese; 2) the Ala45Thr may affect the onset pattern of T2DM, i.e., early-onset but not late-onset T2DM in Chinese; and 3) onset-age stratified analysis may be useful to determine the association of NeuroD1-Ala45Thr variation with susceptibility to genetic heterogeneous T2DM in Chinese.  相似文献   

15.
Fabry disease is a panethnic, X-linked, inborn error of glycosphingolipid metabolism resulting from mutations in the α-galactosidase A gene (GLA) that lead to the deficient activity of the lysosomal enzyme, α-galactosidase A (α-Gal A). Affected males with no α-Gal A activity have the early-onset classic phenotype, whereas those with residual activity present with the later-onset subtype. Recently, we reported that newborn enzyme-based screening using dried blood spots (DBS) in Taiwan revealed a high incidence of newborn males who had the GLA c.936+919G→A (IVS4+919G→A) mutation. This lesion causes cryptic splicing, markedly reducing the amount of wild-type GLA mRNA, and has been found in males with the later-onset Fabry phenotype, manifesting as cardiac, renal and/or cerebrovascular disease. To more accurately determine the incidence of the IVS4+919G→A mutation, 20,063 consecutive newborns were screened by a deoxyribonucleic acid (DNA)-based assay. Of the 10,499 males, 12 (1/875) and 24 of the 9,564 females (1/399) had the mutation. On the basis of these frequencies, the previous newborn enzyme-based DBS screening (cutoff: <30% of the normal mean) only identified 67% and 17% of mutation-positive males and females, respectively. The mean DBS α-Gal A activities in the mutation-positive males and females were 23% (1.54 U) and 55% (3.63 U) of normal mean male/female values, respectively. These studies confirm the high incidence of the IVS4+919G→A mutation in the Taiwanese population and indicate that its detectability by enzyme-based DBS screening is unreliable, especially in females. These studies emphasize the superiority of DNA-based newborn screening for common mutations, particularly for X-linked diseases.  相似文献   

16.
d-2-hydroxyglutaric aciduria is a neurometabolic disorder with both a mild and a severe phenotype and with unknown etiology. Recently, a novel enzyme, d-2-hydroxyglutarate dehydrogenase, which converts d-2-hydroxyglutarate into 2-ketoglutarate, and its gene were identified. In the genes of two unrelated patients affected with d-2-hydroxyglutaric aciduria, we identified disease-causing mutations. One patient was homozygous for a missense mutation (c.1331T-->C; p.Val444Ala). The other patient was compound heterozygous for a missense mutation (c.440T-->G; p.Ile147Ser) and a splice-site mutation (IVS1-23A-->G) that resulted in a null allele. Overexpression studies in HEK-293 cells of proteins containing the missense mutations showed a marked reduction of d-2-hydroxyglutarate dehydrogenase activity, proving that mutations in the d-2-hydroxyglutarate dehydrogenase gene cause d-2-hydroxyglutaric aciduria.  相似文献   

17.
Lin JC  Duell K  Saracino M  Konopka JB 《Biochemistry》2005,44(4):1278-1287
The alpha-factor receptor (Ste2p) stimulates mating of the yeast Saccharomyces cerevisiae. Ste2p belongs to the large family of G protein-coupled receptors that are characterized by seven transmembrane alpha-helices. Receptor activation is thought to involve changes in the packing of the transmembrane helix bundle. To identify residues that contribute to Ste2p activation, second-site suppressor mutations were isolated that restored function to defective receptors carrying either an F204S or Y266C substitution which affect residues at the extracellular ends of transmembrane domains 5 and 6, respectively. Thirty-five different suppressor mutations were identified. On their own, these mutations caused a range of phenotypes, including hypersensitivity, constitutive activity, altered ligand binding, and loss of function. The majority of the mutations affected residues in the transmembrane segments that are predicted to face the helix bundle. Many of the suppressor mutations caused constitutive receptor activity, suggesting they improved receptor function by partially restoring the balance between the active and inactive states. Analysis of mutations in transmembrane domain 7 implicated residues Ala281 and Thr282 in receptor activation. The A281T and T282A mutants were supersensitive to S. cerevisiae alpha-factor, but were defective in responding to a variant of alpha-factor produced by another species, Saccharomyces kluyveri. The A281T mutant also displayed 8.7-fold enhanced basal signaling. Interestingly, Ala281 and Thr282 are situated in approximately the same position as Lys296 in rhodopsin, which is covalently linked to retinal. These results suggest that transmembrane domain 7 plays a role in receptor activation in a wide range of G protein-coupled receptors from yeast to humans.  相似文献   

18.
Acute intermittent porphyria (AIP), the most common acute hepatic porphyria, is a low-penetrant autosomal dominant disorder caused by mutations in the porphobilinogen deaminase (PBGD) or hydroxymethylbilane synthase (HMBS) gene. Although AIP has been identified in all the main ethnic groups, little is known about PBGD gene defects in Africans, Afro-Caribbean and Afro-Americans. We have carried out PBGD gene screening among seven unrelated AIP families and 98 controls belonging to the Afro-Caribbean (French West Indies) and the sub-Saharan African (Morocco, Algeria, Cameroon, Mali, and Burkina Faso) populations. Using denaturing-gradient gel electrophoresis (DGGE) and direct sequencing we characterized six different mutations, including four novel, from the seven AIP families: three splicing defects (IVS 5+2 Ins G; IVS 7+1 G to A in two families; IVS 10-1 G to T); a small deletion (1004 Del G); and two missense mutations (R116 W; A270G). The allele frequencies of the 14 polymorphic sites, previously known in the normal Caucasian population, were similar in Africans and Afro-Caribbean control populations. Interestingly, two common new intragenic polymorphic sites, close to intron/junction boundaries, were identified only in blacks: 1) in intron 2, a single base-pair G deletion at position 3167 (G:0.88; delG:0.12); 2) in intron 10, a A/G dimorphism at position 7052 (A:0.56; G:0.44). These two single nucleotide polymorphisms (SNPs) were never encountered in 750 unrelated Caucasian subjects. The allele frequency distributions of populations within black ethnic groups (Africans and Afro-Caribbean) are similar. This study highlights differences both in PBGD gene mutations causing AIP and in SNPs between white and black peoples; the allele frequencies provided contribute to a better knowledge of the variability of these markers among the major population groups, especially in sub-Saharan West African and Afro-Caribbean populations.  相似文献   

19.
Previous studies have demonstrated that the genetic variations of glucocorticoid receptor gene (NR3C1) are associated with both familial steroid resistance and acquired steroid resistance in some diseases, such as Cushing's disease, leukemia, lupus nephritis, and female pseudohermaphroditism. In this study, we examined the genetic variations of NR3C1 in 35 children with sporadic steroid-resistant nephrotic syndrome (SRNS), and in 83 cases with sporadic steroid-sensitive NS (SSNS) using polymerase chain reaction, denaturing high-performance liquid chromatography and DNA sequencing, and analyzed possible associations between NR3C1 variants and steroid resistance in sporadic NS. No causative mutations were found; however, six previously identified and six novel polymorphisms, 1206C > T, 1374A > G, 2382C > T, 2193T > G, IVS7-68_-63delAAAAAA, and IVS8-9C > G, were detected. Two novel haplotypes, [1374A > G; IVS7-68_-63delAAAAAA; IVS8-9C > G; 2382C > T] and [1896C > T; 2166C > T; 2430T > C], of NR3C1 were also identified in sporadic NS and controls. The odds ratios (95% Confidence Interval) for the two novel NR3C1 haplotypes in the sporadic nephrotic children at risk of steroid resistance were 4.970 (0.889-27.788) and 2.194 (0.764-6.306), respectively, but the association between NR3C1 haplotypes and steroid resistance was not significant. Further studies on the possible association between the two novel NR3C1 haplotypes and steroid resistance in sporadic NS in larger cohorts are required.  相似文献   

20.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary disease of small vessel caused by mutations in the NOTCH3 gene (NCBI Gene ID: 4854) located on chromosome 19p13.1. NOTCH3 consists of 33 exons which encode a protein of 2321 amino acids. Exons 3 and 4 were found to be mutation hotspots, containing more than 65% of all CADASIL mutations. We performed direct sequencing on an ABI 3130 Genetic Analyser to screen for mutations and polymorphisms on 300 patients who were clinically suspected to have CADASIL. First, exons 3 and 4 were screened in NOTCH3 and if there were no variations found, then extended CADASIL testing (exons 2, 11, 18 and 19) was offered to patients. Here we report two novel non-synonymous mutations identified in the NOTCH3 gene. The first mutation, located in exon 4 was found in a 49-year-old female and causes an alanine to valine amino acid change at position 202 (605C>T). The second mutation, located in exon 11, was found in a 66-year-old female and causes a cysteine to arginine amino acid change at position 579 (1735T>C). We also report a 46-year-old male with a known polymorphism Thr101Thr (rs3815188) and an unreported polymorphism NM_000435.2:c.679+60G>A observed in intron 4 of the NOTCH3 gene. Although Ala202Ala (rs1043994) is a common polymorphism in the NOTCH3 gene, our reported novel mutation (Ala202Val) causes an amino acid change at the same locus. Our other reported mutation (Cys579Arg) correlates well with other known mutations in NOTCH3, as the majority of the CADASIL-associated mutations in NOTCH3 generally occur in the EGF-like (epidermal growth factor-like) repeat domain, causing a change in the number of cysteine residues. The intronic polymorphism NM_000435.2:c.679+60G>A lies close to the intron-exon boundary and may affect the splicing mechanism in the NOTCH3 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号