首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
河北木兰围场油松年轮生态学的初步研究   总被引:9,自引:0,他引:9  
运用树木年轮气候学方法,研究了河北木兰围场油松的生长与气候要素之间的关系.结果表明:油松生长对环境变化十分敏感,以早材最为敏感.5、6月气温与油松生长存在显著的负相关关系;6月的降水和相对湿度对油松早材的生长有促进作用, 上年9月到翌年9月的降水对油松生长有更强的促进作用;12月到翌年3月的相对湿度对油松晚材生长的促进作用较干旱和全轮显著;油松的生长与大尺度气候波动存在一定的相关性.1951—2006年间,围场地区增温明显.随气温的升高,油松生长对温度和降水的敏感性下降,且有向相反方向转变的趋势.百年尺度上5—6月平均气温的重建值与观测值差异较大,说明当地油松的宽度生长对气候因子变化的敏感性波动较大.  相似文献   

2.
千山油松年轮宽度年表的建立及其与气候的关系   总被引:5,自引:0,他引:5  
以千山油松为样本,建立了年轮宽度标准化年表、差值年表和自回归年表.结果表明,油松年轮宽度与5—7和9—11月温度指标的相关性较高,且与低温呈正相关,其中与7月的极端最低温、9月的平均最低温显著相关.3种年表与上年12月和当年1月的极端最低温、1月的平均最低温呈显著相关,且其与全年、上年12月、当年5月的降水量显著相关,与4月的降水量极显著相关.油松与水汽压、相对湿度的月和年指标均有较强的相关性.蒸发的年指标和绝大部分月指标对油松生长具有负效应,其中4—7月最明显.油松年表的窄化突变佐证了1800年以来的30次主要的旱灾年历史记录.千山油松的生长受全球或半球尺度气候变化的影响.年表与太阳活动存在显著的11、23和50年左右的公共周期,与地磁指标在10、20和45年左右存在共同的周期变化.  相似文献   

3.
以沈阳城区昭陵古油松为样本,建立了古油松标准化年表、差值年表和自回归年表. 结果表明,年表与沈阳1月和4月的极端最低气温显著相关;与2月的降水量、年均水汽压分别为显著和极显著相关,年表对4、5、9和10月的水汽压响应较强,且均与自回归年表显著相关.年表与相对湿度的年指标,4、5、6、9、10和11月月指标的相关性较高,其中与年值和5月值分别为显著相关(差值年表除外)和极显著相关.蒸发与油松的生长在全年和绝大部分月份呈负相关,其中5月最明显,而1月的蒸发量与油松年表呈正相关.年表的窄化突变佐证了1 700年以来32次历史资料记录的主要旱灾年.沈阳地区的油松生长也受全球或半球尺度温度波动的影响.3种年表对以往太阳黑子的变化和地磁的活动呈现明显负相关,其中与太阳黑子活动存在显著的11年、23年和50年左右的公共周期,与地磁指标在10.5年、20年和45年左右存在共同的周期变化.  相似文献   

4.
基于建立的大兴安岭库都尔地区兴安落叶松树轮宽度年表,分析了兴安落叶松树轮宽度年表与该区温度、降水和帕尔默干湿指数(PDSI)等主要气候因子之间的关系.结果表明:研究区5月和7月的温度与兴安落叶松年轮宽度变化呈极显著负相关关系(P0.01);虽然降水与年轮宽度变化没有表现出显著的相关关系,但6—8月PDSI与年轮宽度变化显著相关(P0.05),说明兴安落叶松的生长明显受区域水热条件共同控制,且以5月和7月最显著.兴安落叶松树轮宽度年表与诸如太平洋年代际振荡(PDO)等大尺度气候系统波动的低频系数和高频系数之间呈显著相关,说明太平洋气候系统的波动对该区树木径向生长具有显著影响.  相似文献   

5.
以沈阳城区昭陵古油松为样本,建立了古油松标准化年表、差值年表和自回归年表.结果表明,年表与沈阳1月和4月的极端最低气温显著相关;与2月的降水量、年均水汽压分别为显著和极显著相关,年表对4、5、9和10月的水汽压响应较强,且均与自回归年表显著相关.年表与相对湿度的年指标,4、5、6、9、10和11月月指标的相关性较高,其中与年值和5月值分别为显著相关(差值年表除外)和极显著相关.蒸发与油松的生长在全年和绝大部分月份呈负相关,其中5月最明显,而1月的蒸发量与油松年表呈正相关.年表的窄化突变佐证了1700年以来32次历史资料记录的主要旱灾年.沈阳地区的油松生长也受全球或半球尺度温度波动的影响.3种年表对以往太阳黑子的变化和地磁的活动呈现明显负相关,其中与太阳黑子活动存在显著的11年、23年和50年左右的公共周期,与地磁指标在10.5年、20年和45年左右存在共同的周期变化.  相似文献   

6.
基于树木年代学方法,利用小兴安岭低海拔阔叶红松林优势树种红松和鱼鳞云杉树轮宽度资料,分别建立年轮宽度年表,探讨影响2个树种径向生长的关键气候因子.结果表明:2个树种对气候因子的响应存在差异,红松较鱼鳞云杉对气候因子的响应更加敏感,更适合用于年轮气候学研究;响应函数分析表明,红松径向生长与当年6月平均温度呈显著负相关,与当年6月降水量呈显著正相关,而鱼鳞云杉与气候因子未表现出显著相关关系;空间相关分析揭示,红松年表具有较大的空间代表性,相关性最高出现在研究区域附近;升温导致的干旱胁迫是限制红松树木生长的主要原因,如果未来全球气温进一步增加,将对红松产生不利的影响;一些大尺度的大气-海洋变化的耦合作用可能对小兴安岭红松径向生长产生影响.  相似文献   

7.
树干木质部形成周期与温度密切相关,存在影响形成层活动的敏感温度,但是尚未研究尝试从树木年轮中探索影响径向生长的敏感温度。华山主峰的华山松径向生长对气候变化较敏感,且华山西峰的气象站记录了1953年以来气象资料,这为探索树木径向生长与温度的关系提供了宝贵的材料。以华山主峰的华山松年轮资料和日值温度资料为基础,通过分析历年日平均温度的变化过程和年轮宽度、早材宽度、晚材宽度、最小密度以及最大密度的相关性,尝试探索华山松径向生长与日均温度变化的关系。结果表明春季一定温度的初日时间对华山松径向生长有较大的影响,其中3 ℃和8 ℃初日时间和持续时间对年轮宽度的促进作用最明显,而3 ℃对早材宽度影响较大,8℃初日时间对晚材的影响较大;高于11 ℃的温度会对华山松的径向生长造成限制,其中以11 ℃的作用最明显;而温度的终日时间对年轮特征影响较小。说明3 ℃是早材形成的敏感温度,8 ℃是晚材形成的敏感温度,温度高于11 ℃会对华山松的径向生长构成胁迫。这证明华山松年轮特征中包含了较多的气候信息,形成层活动和木质部的生长存在阈值温度,通过分析不同温度的生长期与年轮特征的关系可以找到影响华山松径向生长的敏感温度。这些敏感的温度是通过什么生理过程影响木质部的形成尚无法得知,但是这为解释树木生长对全球温度升高的响应以及利用华山松年轮重建历史气候提供了重要依据。  相似文献   

8.
广东阳春现代樟树树轮宽度变化及其对气候因子的响应   总被引:5,自引:0,他引:5  
树木年轮方法定年准确、连续性强、分辨率高和易于获取复本等 ,成为全球气候变化研究的重要手段之一。在热带、亚热带地区 ,受树木生理特性的影响 ,树轮研究工作开展较少。通过广东阳春过渡热带现代樟树树木年轮宽度的变化 ,发现秋季降水是影响研究区樟树生长的重要因子。树轮记录的准 4~ 4 .92 a周期的树轮指数变化可能与厄尔尼诺的周期有关 ,即厄尔尼诺引起气候变化对树木生长产生影响。尽管樟树生长快 ,树轮不清晰 ,交叉定年困难 ,但由于研究区存在明显的旱季 ,樟树树轮仍然能够在一定程度上反映气候条件的影响。  相似文献   

9.
近年来逆境导致植物雌雄幼苗的生长出现差异被许多控制实验所证实, 而有关气候变化对雌雄异株植物成树生长的潜在影响尚未引起人们广泛的关注。为进一步揭示气候变化对雌雄植株树木径向和密度生长的不同影响, 该文通过树轮生态学的研究方法, 选择小五台山天然青杨(Populus cathayana)种群为研究对象, 对青杨雌雄植株近30年(1982-2011)的树轮生长特性及其与气候的相关性进行了分析。结果显示: 1)在近30年当地气温不断升高的气候条件下, 雌株的年轮最大密度和晚材平均密度均高于雄株(p < 0.05), 但雌雄植株的径向生长无显著差异; 2)雌雄植株年轮最大密度和宽度差值年表的变化趋势具有一致性, 但在年轮最大密度差值年表的变化上雄株波动幅度大于雌株; 3)青杨雌雄植株年轮密度差值年表对温度响应的月份明显不同。雌株年轮最大密度与当年8月的月平均最高气温显著正相关, 而雄株年轮最大密度与当年1月和4月的气温负相关; 4)生长季前的气候变化对青杨雌雄植株的径向生长均有明显的限制作用。此外, 当年6月的高温对于早材生长的限制作用特别明显。上述结果表明, 雌雄异株植物在树木年轮生长方面对全球气候变暖可能具有不同的响应机制, 雌株比雄株更侧重于密度生长。  相似文献   

10.
北亚热带马尾松年轮宽度与NDVI的关系   总被引:2,自引:0,他引:2  
北亚热带地处暖温带向亚热带的过渡地区,对环境变化较为敏感。因此,研究北亚热带马尾松年轮宽度与森林NDVI的关系对于揭示陆地生态系统对全球气候变化的响应具有重要意义。以马尾松自然分布北界的南郑县和河南省鸡公山自然保护区为研究地点,利用北亚热带马尾松年轮宽度指数和1982-2006年逐月NOAA/AVHRR的归一化植被指数(NDVI)数据及气候数据,在分析年轮宽度及NDVI与气候因子关系的基础上,重点讨论了北亚热带马尾松径向生长与NDVI之间的关系。结果表明:北亚热带NDVI受水热条件的共同控制,其中与月均温相关性较强,且以正相关为主,与月降水量和干旱度指数多负相关;马尾松的径向生长与上一生长季的温度呈正相关,降水和干旱度指数为负相关,当年生长季内的温度和降水以促进作用为主,而与干旱度指数的关系在两地区内相反;南郑县和鸡公山地区年轮宽度与NDVI年值之间关系均不显著(P>0.05)。单月来讲,南郑县3、4、12月NDVI值与年表显著相关,鸡公山地区9月份的NDVI值与差值年表RES相关性最大;南郑县树木生长受温度影响最大,而鸡公山地区受温度和降水的综合作用。因此,在北亚热带地区,长时间序列的年轮宽度数据并不能很好反应NDVI的长期变化,利用树轮宽度指数来重建北亚热带地区NDVI需要进一步研究。  相似文献   

11.
城市环境中树木年轮的变异及其与工业发展的关系   总被引:15,自引:0,他引:15  
通过对污染敏感树种油松年轮宽度和元素含量的变异与沈阳工业发展的相关分析。追溯和重建沈阳地区的生态环境变迁史,揭示城市环境质量与树木年轮变异之间的相关规律。结果表明,在城市污染条件下,树木年轮宽度和微量元素含量均发生了明显的变异,而且这些变异与沈阳工业发展显著相关.  相似文献   

12.
西大别山小林海黄山松树轮宽度的气候意义   总被引:1,自引:0,他引:1  
基于树轮年代学研究方法,在鄂、豫、皖交界的西大别山北坡进行黄山松研究,建立了1915—2011年的树轮宽度标准年表(STD).结果表明: 年表中较高的平均敏感度表明树轮中含有较多的气候变化的高频信息;较高的一阶自相关系数表明树轮生长存在显著的前期生长滞后效应;高信噪比和样本解释总量暗示树轮中含有较多的环境信息.标准年表序列指数与1959—2011年间气象因子的相关分析表明,黄山松树轮宽度生长受生长季末(9—10月)温度、降水量和相对湿度的影响较大;与9—10月帕尔默干旱指数呈显著正相关. 9、10月的水热组合是影响小林海黄山松树轮生长的主要因子.
  相似文献   

13.
彭剑峰  杨爱荣  田沁花 《生态学报》2011,31(20):5977-5983
以万仙山油松(Pinus tabulaeformis)为样本,建立了油松树木年轮宽度序列的标准年表(STD)。与附近气象因子的相关结果表明:与当年6月平均温度呈较为显著的负相关,与前一年的9月和当年的5月以及春季(3-5月)的降水量呈显著正相关,显然影响万仙山油松生长的主要气候因子是5月(或说春季)降水和6月温度。树轮指数与各月PDSI相关值都很高(其中与当年5月的PDSI相关值高达0.614),都超过95%的置信水平,说明水热组合是该区域油松生长的主要限制因子。研究表明,影响本区油松生长的气候因子与我国北方地区油松生长的影响因子有较高的一致性,尤其是生长季前期的温度影响都很大;而其降水的影响及其与PDSI的相关都明显超前于黄土高原及北方地区,这既说明影响油松生长的大气候因子相似,又表明夏季风从东南向西北的不断推进。  相似文献   

14.
Tree core samples of larch (Larix sibirica Ledeb.), spruce (Picea obovata Ledeb.) and pine (Pinus sibirica Du-Tour.) from the northern taiga of West Siberia were collected to assess their potential for summer temperature reconstructions in the Ob River region. Bootstrapped response functions showed that annual growth was mainly influenced by May to June temperatures in pine and by June to July temperatures in spruce and larch. Spruce and pine chronologies showed high positive correlations with previous October temperature. June–July temperatures were reconstructed based on spruce (1795–1996) and larch (1615–1999) tree ring chronologies. The pine chronology could not be used for a reliable temperature reconstruction, due to low values of explained May–June temperature variance (11–15%) but the species has a high potential to help clarify the May–June and October climatic influence on ring width observed in all three species. We explained the effect of the early vegetation period (May–July) and the differences in the temperature signals between spruce and larch tree ring chronologies with the influence of previous September and October temperature on tree growth with the warming effect of the Ob River and differences of the species’ photosynthetic possibilities and the activity of chloroplasts and bud meristem tissues.  相似文献   

15.
Knowledge of tree growth/climate response relationships is important to dendroecological studies and dendroclimatic reconstructions, particularly in the Southeastern Coastal Plain where few such studies have been attempted. To this end, we developed tree-ring chronologies of total ring width, earlywood width, and latewood width from longleaf pine (Pinus palustris Mill.) at three sites in the Southeastern Coastal Plain to examine the climate–growth relationships for this tree species. The length of these chronologies is unprecedented for southern pine chronologies in the Southeast. We compared the tree-ring chronologies to monthly temperature, precipitation, Palmer drought severity index (PDSI), and Palmer hydrological drought index (PHDI) data from the pertinent climate divisions. We found that PDSI and PHDI have the highest correlation with longleaf pine growth, and the strongest relationships between longleaf pine growth and these variables occur between July and November. Precipitation in the spring and summer was also positively related to growth at all sites. The relationship between temperature and growth was the weakest among all climate variables, but warm summer temperatures had a consistent, negative relationship with longleaf pine growth. The climate signal in the latewood was generally more robust than for total ring width and earlywood width.  相似文献   

16.
基于贺兰山地区98棵油松树轮样本的宽度数据、植被归一化指数(NDVI)数据以及土地覆被数据,采用VS-oscilloscope模型模拟的油松径向生长过程,研究植被冠层与树干形成层物候之间的联系.结果表明:林地冠层与油松形成层生长结束期(EOS)显著相关,且高于草地与形成层之间的相关.油松生长开始期(SOS)和EOS分别...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号