首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-resolved polarized flavin fluorescence was used to study the active site dynamics of Escherichia coli glutathione reductase (GR). Special consideration was given to the role of Tyr177, which blocks the access to the NADPH binding-site in the crystal structure of the enzyme. By comparing wild-type GR with the mutant enzymes Y177F and Y177G, a fluorescence lifetime of 7 ps that accounts for approximately 90% of the fluorescence decay could be attributed to quenching by Y177. Based on the temperature invariance for this lifetime, and the very high quenching rate, electron transfer from Y177 to the light-excited isoalloxazine part of flavin adenine dinucleotide (FAD) is proposed as the mechanism of flavin fluorescence quenching. Contrary to the mutant enzymes, wild-type GR shows a rapid fluorescence depolarization. This depolarization process is likely to originate from a transient charge transfer interaction between Y177 and the light-excited FAD, and not from internal mobility of the flavin, as has previously been proposed. Based on the fluorescence lifetime distributions, the mutants Y177F and Y177G have a more flexible protein structure than wild-type GR: in the range of 223 K to 277 K in 80% glycerol, both tyrosine mutants mimic the closely related enzyme dihydrolipoyl dehydrogenase. The fluorescence intensity decays of the GR enzymes can only be explained by the existence of multiple quenching sites in the protein. Although structural fluctuations are likely to contribute to the nonexponential decay and the probability of quenching by a specific site, the concept of conformational substates need not be invoked to explain the heterogeneous fluorescence dynamics.  相似文献   

2.
Time-resolved fluorescence and fluorescence anisotropy data surfaces of flavin adenine dinucleotide bound to lipoamide dehydrogenase from Azotobacter vinelandii in 80% glycerol have been obtained by variation of excitation energy and temperature between 203 and 303 K. The fluorescence kinetics of a deletion mutant lacking 14 COOH-terminal amino acids were compared with the wild-type enzyme to study a possible interaction of the COOH-terminal tail with the active site of the enzyme. The flavin adenine dinucleotide fluorescence in both proteins exhibits a bimodal lifetime distribution as recovered by the maximum entropy method of data analysis. The difference in standard enthalpy and entropy of associated conformational substates was retrieved from the fractional contributions of the two lifetime classes. Activation energies of thermal quenching were obtained that confirm that the isoalloxazines in the deletion mutant are solvent accessible in contrast to the wild-type enzyme. Red-edge spectroscopy in conjunction with variation of temperature provides the necessary experimental axes to interpret the fluorescence depolarization in terms of intersubunit energy transfer rather than reorientational dynamics of the flavins. The results can be explained by a compartmental model that describes the anisotropy decay of a binary, inhomogeneously broadened, homoenergy transfer system. By using this model in a global analysis of the fluorescence anisotropy decay surface, the distance between and relative orientation of the two isoalloxazine rings are elucidated. For the wild-type enzyme, this geometrical information is in agreement with crystallographic data of the A. vinelandii enzyme, whereas the mutual orientation of the subunits in the deletion mutant is slightly altered. In addition, the ambiguity in the direction of the emission transition moment in the isoalloxazine ring is solved. The anisotropy decay parameters also provide information on electronic and dipolar relaxational properties of the flavin active site. The local environment of the prosthetic groups in the deletion mutant of the A. vinelandii enzyme is highly inhomogeneous, and a transition from slow to rapid dipolar relaxation is observed over the measured temperature range. In the highly homogeneous active site of the wild-type enzyme, dipolar relaxation is slowed down beyond the time scale of fluorescence emission at any temperature studied. Our results are in favor of a COOH-terminal polypeptide interacting with the active site, thereby shielding the isoalloxazines from the solvent. This biological system forms a very appropriate tool to test the validity of photophysical models describing homoenergy transfer.  相似文献   

3.
Time-resolved polarized fluorescence spectroscopy has been applied to the bound FAD in the structurally related flavoproteins lipoamide dehydrogenase from Azotobacter vinelandii (LipDH-AV) and glutathione reductase (GR) from human erythrocytes. The fluorescence parameters as obtained from the maximum entropy analysis differ considerably in both enzymes, reflecting the unique properties of the flavin microenvironment. Three conformational substates are revealed in LipDH-AV and five in GR. Almost 90% of the population of GR molecules has a fluorescence lifetime in the order of 30 ps which originates from efficient exciplex formation with Tyr197. Equilibrium fluctuations between conformational substates are observed for LipDH-AV on a nanosecond time scale in the temperature range 277-313 K. Interconversion between conformational substates in GR is slow, indicating that large activation barriers exist between the states. In agreement with these results, a model is postulated which ascribes a role in catalysis to equilibrium fluctuations between conformational substates in GR and LipDH-AV. From time-resolved fluorescence anisotropy as a function of temperature, distinction can be made between flavin reorientational motion and interflavin energy transfer. In both proteins intersubunit energy transfer between the prosthetic groups is observed. Furthermore, it is revealed that only the flavin in glutathione reductase exhibits rapid restricted reorientational motion. Geometric information concerning the relative orientation and distance of the flavins can be extracted from the parameters describing the energy-transfer process. The obtained spatial arrangement of the flavins is in excellent agreement with crystallographic data.  相似文献   

4.
Russell TR  Tu SC 《Biochemistry》2004,43(40):12887-12893
Homodimeric FRD(Aa) Class I is an NADH:flavin oxidoreductase from Aminobacter aminovorans. It is unusual because it contains an FMN cofactor but utilizes a sequential-ordered kinetic mechanism. Because little is known about NADH-specific flavin reductases in general and FRD(Aa) in particular, this study aimed to further explore FRD(Aa) by identifying the functionalities of a key residue. A sequence alignment of FRD(Aa) with several known and hypothetical flavoproteins in the same subfamily reveals within the flavin reductase active-site domain a conserved GDH motif, which is believed to be responsible for the enzyme and NADH interaction. Mutation of the His140 in this GDH motif to alanine reduced FRD(Aa) activity to <3%. An ultrafiltration assay and fluorescence quenching demonstrated that H140A FRD(Aa) binds FMN in the same 1:1 stoichiometric ratio as the wild-type enzyme, but with slightly weakened affinity (K(d) = 0.9 microM). Anaerobic stopped-flow studies were carried out using both the native and mutated FRD(Aa). Similar to the native enzyme, H140A FRD(Aa) was also able to reduce the FMN cofactor by NADH although much less efficiently. Kinetic analysis of anaerobic reduction measurements indicated that the His140 residue of FRD(Aa) was essential to NADH binding, as well as important for the reduction of the FMN cofactor. For the native enzyme, the cofactor reduction was followed by at least one slower step in the catalytic pathway.  相似文献   

5.
Fluorescence properties of reduced flavins and flavoproteins   总被引:1,自引:0,他引:1  
Fluorescence lifetimes and polarized emission properties of reduced flavin were measured using several model compounds and flavoproteins. Depending on the conditions of solvent and temperature or reduction method the lifetimes vary between 1 and 15 ns. The longer lifetime values are found in several forms of reduced lactate oxidase, in which a good correlation exists between fluorescence intensity and lifetime. In practically all flavoproteins the fluorescence is heterogeneous. Several mechanisms are proposed to explain the observed heterogeneity in lifetimes. The reduced models in glycerol at subzero temperature exhibit high degrees of polarization of the fluorescence, whereas distinct depolarization is encountered in several reduced flavoproteins suggesting a certain mobility of the flavin chromophor.  相似文献   

6.
Interaction of dipalmitoyl-phosphatidylcholine with calf thymus histone H1   总被引:1,自引:0,他引:1  
The interaction between dipalmitoyl-phosphatidylcholine and calf thymus histone H1 has been studied. A protein-phospholipid complex, resulting from this interaction, has been isolated by centrifugation in a sucrose gradient. The phospholipid-histone interaction causes an increase in the alpha-helix content of the protein; the corresponding conformational transition is observed by CD studies in the far-u.v. region. The only tyrosine residue of the protein can be advantageously used as an intrinsic fluorescent probe; thus, fluorescence spectra indicate that protein folding induced by phospholipids is concomitant with the tyrosine transfer into a more hydrophobic environment. The trypsin-resistant core of the histone is also folded in the presence of the phospholipid but the conformational transition occurs at lower lipid concentration than for the intact protein. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene indicates that the protein shifts the transition temperature of the phospholipid from 41.5 to 44.0 degrees. Secondary structure prediction of the trypsin-resistant core of the histone indicates the existence of an amphipathic helix that could be responsible for the lipid-protein interaction.  相似文献   

7.
Characteristics of murine protoporphyrinogen oxidase.   总被引:2,自引:1,他引:1       下载免费PDF全文
Protoporphyrinogen oxidase (EC 1.3.3.4) (PPO) is the penultimate enzyme of the heme biosynthetic pathway. Mouse PPO has been purified in low yield and kinetically characterized by this laboratory previously. A new more rapid purification procedure is described herein, and with this protein we detect a noncovalently bound flavin moiety. This flavin is present at approximately stoichiometric amounts in the purified enzyme and has been identified by its fluorescence spectrum and high performance liquid chromatography as flavin mononucleotide (FMN). Fluorescence quenching studies on the flavin yielded a Stern-Volmer quenching constant of 12.08 M-1 for iodide and 1.1 M-1 for acrylamide. Quenching of enzyme tryptophan fluorescence resulted in quenching constants of 6 M-1 and 10 M-1 for iodide and acrylamide, respectively. Plasma scans performed on purified enzyme preparations did not reveal the presence of stoichiometric amounts of protein-bound metal ions, and we were unable to detect any protein-associated pyrroloquinoline quinone (PQQ). Data from circular dichroism studies predict a secondary structure of the native protein consisting of 30.5% alpha helix, 40.5% beta sheet, 13.7% turn, and 15.3% random coil. Denaturation of PPO with urea resulted in a biphasic curve when ellipticity is plotted against urea concentration, typical of amphipathic proteins.  相似文献   

8.
Maize polyamine oxidase (MPAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme that catalyses the oxidation of spermine and spermidine at the secondary amino groups. The structure of MPAO indicates a 30-A long U-shaped tunnel that forms the catalytic site, with residues Glu62 and Glu170 located close to the enzyme-bound FAD and residue Tyr298 in close proximity to Lys300, which in turn is hydrogen-bonded to the flavin N(5) atom via a water molecule (HOH309). To provide insight into the role of these residues in the catalytic mechanism of FAD reduction, we have performed steady-state and stopped-flow studies with wild-type, Glu62Gln, Glu170Gln, Tyr298Phe, and Lys300Met MPAO enzymes. We show that the steady-state enzyme activity is governed by an ionisable group with a macroscopic pK(a) of approximately 5.8. Kinetic analysis of the Glu62Gln, Glu170Gln, and Tyr298Phe MPAO enzymes have indicated (i) only small perturbations in catalytic activity as a result of mutation and (ii) steady-state pH profiles essentially unaltered when compared to the wild-type enzyme, suggesting that these residues do not play a critical role in the reaction mechanism. These kinetic observations are consistent with computational calculations that suggest that Glu62 and Glu170 are protonated over the pH range accessible to kinetic studies. Substitution of Lys300 with Met in MPAO resulted in a 1400-fold decrease in the rate of flavin reduction and a 160-fold decrease in the equilibrium dissociation constant for the Lys300Met-spermidine complex, consistent with a major role for this residue in the mechanism of substrate oxidation. A sizable solvent isotope effect (SIE = 5) accompanies FAD reduction in the wild-type enzyme and steady-state turnover (SIE = 2.3) of MPAO, consistent with the reductive half-reaction of MPAO making a major contribution to rate limitation in steady-state turnover. Studies using the enzyme-monitored turnover method indicate that oxidized FAD is the prominent form during steady-state turnover, consistent with the reductive half-reaction being rate-limiting. Our studies indicate the importance of Lys300 and probable importance of HOH309 to the mechanism of flavin reduction in MPAO. Possible roles for Lys300 and water in the mechanism of flavin reduction are discussed.  相似文献   

9.
The reactions of several mutants at position 244 and 261 of bacterial glycine oxidase (GO) were studied by stopped-flow and steady-state kinetic methods. Substituting H244 with phenylalanine, glutamate, and glutamine and M261 with histidine and tyrosine did not affect the expression of GO and the physicochemical properties of bound FAD. All the H244 and M261 mutants of GO we prepared retained activity in both steady-state and stopped-flow kinetic studies, indicating they do not serve as key elements in glycine and sarcosine oxidation. We demonstrated that the substitution of H244 significantly affected the rate of flavin reduction with glycine even if this change did not modify the turnover number, which is frequently increased compared to wild-type GO. However, substitution of M261 affected the interaction with substrates/inhibitors and the rate of flavin reduction with sarcosine and resulted in a decrease in turnover number and efficiency with all the substrates tested. The considerable decrease in the rate of flavin reduction changed the conditions such that it was partially rate-limiting in the catalytic cycle compared to the wild-type GO. Our studies show some similarities, but also major differences, in the catalytic mechanism of GO and other flavooxidases also active on glycine and sarcosine and give insight into the mode of modulation of catalysis and substrate specificities.  相似文献   

10.
R B Weinberg 《Biochemistry》1988,27(5):1515-1521
We have investigated the exposure and electronic interaction of tyrosine and tryptophan residues in human apolipoprotein A-IV (apo A-IV). Differential absorption spectroscopy and chemical titration demonstrated that human apo A-IV contains six tyrosine residues, four of which are buried in the hydrophobic interior of the protein and two of which are exposed on the protein surface. Denaturation of the protein by guanidinium chloride caused progressive exposure of the buried tyrosines. The fluorescence emission spectra of apo A-IV were characterized by a blue-shifted tryptophan emission with a low relative quantum yield of 0.37 and a tyrosine emission with a relative quantum yield of 0.62. Fluorescence quenching studies demonstrated a low fractional exposure of tryptophan in the native state. Denaturation of apo A-IV was accompanied by an increase in the relative quantum yield which peaked at the denaturation midpoint. Fluorescence excitation techniques demonstrated energy transfer from tyrosine residues with a transfer efficiency of 0.40 in the native state; the efficiency was conformation dependent and decreased with protein unfolding. Fluorescence studies of tetranitromethane-modified apo A-IV suggested that a significant fraction of energy transfer proceeds from the exposed tyrosine residues. These data demonstrate the existence of intramolecular fluorescence energy transfer and tryptophan quenching in human apolipoprotein A-IV and suggest that the amino terminus of this protein is situated in a hydrophobic domain within energy-transfer range of nonvicinal tyrosine residues.  相似文献   

11.
Amyloid formation normally exhibits a lag phase followed by a growth phase, which leads to amyloid fibrils. Characterization of the species populated during the lag phase is experimentally challenging, but is critical since the most toxic entities may be pre-fibrillar species. p-Cyanophenylalanine (FC≡N) fluorescence is used to probe the nature of lag-phase species populated during the formation of amyloid by human islet amyloid polypeptide. The polypeptide contains two phenylalanines at positions 15 and 23 and a single tyrosine located at the C-terminus. Each aromatic residue was separately replaced by FC≡N. The substitutions do not perturb amyloid formation relative to wild-type islet amyloid polypeptide as detected using thioflavin T fluorescence and electron microscopy. FC≡N fluorescence is high when the cyano group is hydrogen bonded and low when it is not. It can also be quenched via Förster resonance energy transfer to tyrosine. Fluorescence intensity was monitored in real time and revealed that all three positions remained exposed to solvent during the lag phase but less exposed than unstructured model peptides. The time course of amyloid formation as monitored by thioflavin T fluorescence and FC≡N fluorescence is virtually identical. Fluorescence quenching experiments confirmed that each residue remains exposed during the lag phase. These results place significant constraints on the nature of intermediates that are populated during the lag phase and indicate that significant sequestering of the aromatic side chains does not occur until β-structure sufficient to bind thioflavin T has developed. Seeding studies and analysis of maximum rates confirm that sequestering of the cyano groups occurs concomitantly with the development of thioflavin T binding capability. Overall, the process of amyloid formation and growth appears to be remarkably homogenous in terms of side-chain ordering. FC≡N also provides information about fibril structure. Fluorescence emission measurements, infrared measurements, and quenching studies indicate that the aromatic residues are differentially exposed in the fibril state with Phe15 being the most exposed. FC≡N is readily accommodated into proteins; thus, the approach should be broadly applicable.  相似文献   

12.
The conserved sequence motif "RxY(T)(S)xx(S)(N)" coordinates flavin binding in NADH:cytochrome b(5) reductase (cb(5)r) and other members of the flavin transhydrogenase superfamily of oxidoreductases. To investigate the roles of Y93, the third and only aromatic residue of the "RxY(T)(S)xx(S)(N)" motif, that stacks against the si-face of the flavin isoalloxazine ring, and P92, the second residue in the motif that is also in close proximity to the FAD moiety, a series of rat cb(5)r variants were produced with substitutions at either P92 or Y93, respectively. The proline mutants P92A, G, and S together with the tyrosine mutants Y93A, D, F, H, S, and W were recombinantly expressed in E. coli and purified to homogeneity. Each mutant protein was found to bind FAD in a 1:1 cofactor:protein stoichiometry while UV CD spectra suggested similar secondary structure organization among all nine variants. The tyrosine variants Y93A, D, F, H, and S exhibited varying degrees of blue-shift in the flavin visible absorption maxima while visible CD spectra of the Y93A, D, H, S, and W mutants exhibited similar blue-shifted maxima together with changes in absorption intensity. Intrinsic flavin fluorescence was quenched in the wild type, P92S and A, and Y93H and W mutants while Y93A, D, F, and S mutants exhibited increased fluorescence when compared to free FAD. The tyrosine variants Y93A, D, F, and S also exhibited greater thermolability of FAD binding. The specificity constant (k(cat)/K(m)(NADH)) for NADH:FR activity decreased in the order wild type > P92S > P92A > P92G > Y93F > Y93S > Y93A > Y93D > Y93H > Y93W with the Y93W variant retaining only 0.5% of wild-type efficiency. Both K(s)(H4NAD) and K(s)(NAD+) values suggested that Y93A, F, and W mutants had compromised NADH and NAD(+) binding. Thermodynamic measurements of the midpoint potential (E degrees ', n = 2) of the FAD/FADH(2) redox couple revealed that the potentials of the Y93A and S variants were approximately 30 mV more positive than that of wild-type cb(5)r (E degrees ' = -268 mV) while that of Y93H was approximately 30 mV more negative. These results indicate that neither P92 nor Y93 are critical for flavin incorporation in cb(5)r and that an aromatic side chain is not essential at position 93, but they demonstrate that Y93 forms contacts with the FAD that effectively modulate the spectroscopic, catalytic, and thermodynamic properties of the bound cofactor.  相似文献   

13.
A structural feature shared by the metallo-beta-lactamases is a flexible loop of amino acids that extends over their active sites and that has been proposed to move during the catalytic cycle of the enzymes, clamping down on substrate. To probe the movement of this loop (residues 152-164), a site-directed mutant of metallo-beta-lactamase L1 was engineered that contained a Trp residue on the loop to serve as a fluorescent probe. It was necessary first, however, to evaluate the contribution of each native Trp residue to the fluorescence changes observed during the catalytic cycle of wild-type L1. Five site-directed mutants of L1 (W39F, W53F, W204F, W206F, and W269F) were prepared and characterized using metal analyses, CD spectroscopy, steady-state kinetics, stopped-flow fluorescence, and fluorescence titrations. All mutants retained the wild-type tertiary structure and bound Zn(II) at levels comparable with wild type and exhibited only slight (<10-fold) decreases in k(cat) values as compared with wild-type L1 for all substrates tested. Fluorescence studies revealed a single mutant, W39F, to be void of the fluorescence changes observed with wild-type L1 during substrate binding and catalysis. Using W39F as a template, a Trp residue was added to the flexile loop over the active site of L1, to generate the double mutant, W39F/D160W. This double mutant retained all the structural and kinetic characteristics of wild-type L1. Stopped-flow fluorescence and rapid-scanning UV-visible studies revealed the motion of the loop (k(obs) = 27 +/- 2 s(-1)) to be similar to the formation rate of a reaction intermediate (k(obs) = 25 +/- 2 s(-1)).  相似文献   

14.
The recently identified transient receptor potential (TRP) channel family member, TRPV4 (formerly known as OTRPC4, VR-OAC, TRP12, and VRL-2) is activated by hypotonicity. It is highly expressed in the kidney as well as blood-brain barrier-deficient hypothalamic nuclei responsible for systemic osmosensing. Apart from its gating by hypotonicity, little is known about TRPV4 regulation. We observed that hypotonic stress resulted in rapid tyrosine phosphorylation of TRPV4 in a heterologous expression model and in native murine distal convoluted tubule cells in culture. This tyrosine phosphorylation was sensitive to the inhibitor of Src family tyrosine kinases, PP1, in a dose-dependent fashion. TRPV4 associated with Src family kinases by co-immunoprecipitation studies and confocal immunofluorescence microscopy, and this interaction required an intact Src family kinase SH2 domain. One of these kinases, Lyn, was activated by hypotonic stress and phosphorylated TRPV4 in an immune complex kinase assay and an in vitro kinase assay using recombinant Lyn and TRPV4. Transfection of wild-type Lyn dramatically potentiated hypotonicity-dependent TRPV4 tyrosine phosphorylation whereas dominant negative-acting Lyn modestly inhibited it. Through mutagenesis studies, the site of tonicity-dependent tyrosine phosphorylation was mapped to Tyr-253, which is conserved across all species from which TRPV4 has been cloned. Importantly, point mutation of Tyr-253 abolished hypotonicity-dependent channel activity. In aggregate, these data indicate that hypotonic stress results in Src family tyrosine kinase-dependent tyrosine phosphorylation of the tonicity sensor TRPV4 at residue Tyr-253 and that this residue is essential for channel function in this context. This is the first example of direct regulation of TRP channel function through tyrosine phosphorylation.  相似文献   

15.
Beta-Cyclopiazonate oxidocyclase from Penicillium cyclopium has been previously shown to contain flavin dinucleotide in covalent linkage to the protein. In the present study, a pure flavin mononucleotide peptide was isolated from the enzyme by tryptic-chymotryptic digestion, chromatography on Florisil and on diethylaminoethylcellulose, and hydrolysis with nucleotide pyrophosphatase. The flavin peptide contains 9 amino acids, including histidine in linkage to the flavin, and Asx as the N-terminal residue. The fluorescence of the flavin in the FMN peptide is profoundly quenched even at pH 3.2, where protonation of the imidazole prevents queching of the flavin fluorescence by histidine. This quenching appears to be due to interaction of the flavin with a tryptophan residue, as the quenching is abolished by oxidation of the tryptophan with performic acid. Similarly, the fluorescence of the tryptophan in the peptide is quenched, presumably by the flavin. The flavin of beta-cyclopiazonate oxidocylcase is attached, by the way of the 8alpha-methylene group, to the imidazole ring of a histidine. The aminoacylflavin isolated from the enzyme is identical in the pKa of its imidazole group, in reduction by NaBH4, and in other properties with synthetic 8alpha-(N1-histidyl)riboflavin. The pKa of the histidylriboflavin component of the oxidocyclase is 5.2 before and 5.0 after acid modification of the ribityl chain, as is found in the synthetic derivative. It is concluded that the enzyme contains the N1 isomer of histidylriboflavin and that acid hydrolysis of flavin peptides isolated from the oxidocyclase, while liberating histidylriboflavin, also causes acid modification of the ribityl chain of the flavin moiety.  相似文献   

16.
J Weber  R S Lee  E Grell  A E Senior 《Biochemistry》1992,31(22):5112-5116
(1) Previous mutational analyses have shown that residue beta R398 of the beta-subunit is a key residue for binding of the inhibitory antibiotic aurovertin to Escherichia coli F1Fo-ATP synthase. Here, we studied purified F1 from the beta R398C and beta R398W mutants. ATPase activity in both cases was resistant to aurovertin inhibition. The fluorescence spectrum (lambda exc = 278 or 295 nm) of beta R398W F1 showed a significant red-shift as compared to wild-type and beta R398C enzymes, indicating that residue beta R398 lies in a polar environment. On the basis of this and previous evidence, we propose that aurovertin binding to F1-ATPase involves a specific charged donor-acceptor H-bond between residue beta R398 and the 7-hydroxyl group of aurovertin. (2) The fluorescent substrate analog lin-benzo-ADP was shown to bind to beta R398W F1 catalytic sites with the same Kd values as to wild-type F1, and with the same quenching of the fluorescence of the analog. Fluorescence energy transfer was seen between the beta R398W residue and bound lin-benzo-ADP. Analysis of transfer efficiency at varying stoichiometry of bound lin-benzo-ADP showed that interaction occurred between one beta R398W residue and one catalytic-site-bound analog molecule at a distance of approximately 23 A. The relationships of the aurovertin and catalytic sites in the primary and tertiary structure are discussed.  相似文献   

17.
The recovery of enzymatic activity during the folding of muscle acylphosphatase and two single residue mutants (proline 54 to alanine and proline 71 to alanine) from 7 M urea has been monitored and compared with the development of intrinsic fluorescence emission. Fluorescence measurements reveal the presence in the wild-type protein of a major rapid refolding phase followed by a second low amplitude slow phase. The slow phase is absent in the fluorescence trace acquired with the proline 54 to alanine mutant, suggesting the involvement of this proline residue in the fluorescence-detected slow phase of the wild-type protein. The major kinetic phase is associated with a considerable recovery of enzymatic activity, indicating that a large fraction of molecules refolds with effective two-state behavior. The use of time-resolved enzymatic activity as a probe to follow the folding process reveals, however, the presence of another exponential slow phase arising from proline 71. This slow phase is not observable by utilizing optical probes, indicating that, unlike proline 54, the cis to trans isomerization of proline 71 can take place in an intermediate possessing a native-like fold. We suggest that, although spectroscopically silent and structurally insignificant, the cis-trans interconversion of proline residues in native-like intermediates may be crucial for the generation of enzymatic activity of functional enzymes.  相似文献   

18.
Efficient enzyme catalysis depends on exquisite details of structure beyond those resolvable in typical medium- and high-resolution crystallographic analyses. Here we report synchrotron-based cryocrystallographic studies of natural substrate complexes of the flavoenzyme human glutathione reductase (GR) at nominal resolutions between 1.1 and 0.95 Å that reveal new aspects of its mechanism. Compression in the active site causes overlapping van der Waals radii and distortion in the nicotinamide ring of the NADPH substrate, which enhances catalysis via stereoelectronic effects. The bound NADPH and redox-active disulfide are positioned optimally on opposite sides of the flavin for a 1,2-addition across a flavin double bond. The new structures extend earlier observations to reveal that the redox-active disulfide loop in GR is an extreme case of sequential peptide bonds systematically deviating from planarity—a net deviation of 53° across five residues. But this apparent strain is not a factor in catalysis, as it is present in both oxidized and reduced structures. Intriguingly, the flavin bond lengths in oxidized GR are intermediate between those expected for oxidized and reduced flavin, but we present evidence that this may not be due to the protein environment but instead due to partial synchrotron reduction of the flavin by the synchrotron beam. Finally, of more general relevance, we present evidence that the structures of synchrotron-reduced disulfide bonds cannot generally be used as reliable models for naturally reduced disulfide bonds.  相似文献   

19.
The catalytic mechanism proposed for ferredoxin-NADP(+) reductase (FNR) is initiated by reduction of its flavin adenine dinucleotide (FAD) cofactor by the obligatory one-electron carriers ferredoxin (Fd) or flavodoxin (Fld) in the presence of oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)). The C-terminal tyrosine of FNR, which stacks onto its flavin ring, modulates the enzyme affinity for NADP(+)/H, being removed from this stacking position during turnover to allow productive docking of the nicotinamide and hydride transfer. Due to its location at the substrate-binding site, this residue might also affect electron transfer between FNR and its protein partners. We therefore studied the interactions and electron-transfer properties of FNR proteins mutated at their C-termini. The results obtained with the homologous reductases from pea and Anabaena PCC7119 indicate that interactions with Fd or Fld are hardly affected by replacement of this tyrosine by tryptophan, phenylalanine, or serine. In contrast, electron exchange is impaired in all mutants, especially in the nonconservative substitutions, without major differences between the eukaryotic and the bacterial FNR. Introduction of a serine residue shifts the flavin reduction potential to less negative values, whereas semiquinone stabilization is severely hampered, introducing further constraints to the one-electron-transfer processes. Thus, the C-terminal tyrosine of FNR plays distinct and complementary roles during the catalytic cycle, (i) by lowering the affinity for NADP(+)/H to levels compatible with steady-state turnover, (ii) by contributing to the flavin semiquinone stabilization required for electron splitting, and (iii) by modulating the rates of electron exchange with the protein partners.  相似文献   

20.
The bacterial enzyme sulfane sulfurtransferase has been studied using spectroscopic techniques. The enzyme was characterized in terms of its near-UV absorption spectrum, molar ellipticity, intrinsic fluorescence spectra and the effects of general and ionic quenching reagents upon its fluorescence. Fluorescence model studies are consistent with sulfane sulfurtransferase having only a single tryptophan residue, which accounts for its low UV absorption coefficient and suggested that this residue is at least partially exposed to solvent. Second derivative absorption spectroscopy studies revealed that most of the bacterial enzyme's tyrosine residues are exposed to solvent. Unlike the better known sulfurtransferase, bovine liver rhodanese, sulfane sulfurtransferase does not undergo a detectable increase in quantum yield when shifting from the sulfur-containing covalent enzyme intermediate to the free enzyme form (which lacks sulfur) during catalysis. CD studies suggest that sulfane sulfurtransferase has a significantly higher proportion of alpha-helix than rhodanese. The renaturation of sulfane sulfurtransferase denatured in 6 M guanidine was shown to be rapid and complete provided that the enzyme had not been oxidized while in the denatured state. Sulfane sulfurtransferase, like rhodanese, catalyzes the transfer of sulfur from thiosulfate to cyanide via a persulfide intermediate, and displays remarkably similar kinetics in this process (Aird, B.A., Heinrikson, R.L. and Westley, J. (1987) J. Biol. Chem 262, 17327-17335). In light of this, the results of the structural studies with sulfane sulfurtransferase are compared and contrasted to data from similar experiments with rhodanese in hopes that they would provide insight about which phenomena observed with rhodanese are intrinsic to the process of transferring sulfur atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号