首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human-ether-a-go-go-related gene (hERG) encodes the voltage-gated potassium channel (KCNH2 or Kv11.1, commonly known as hERG). This channel plays a pivotal role in the stability of phase 3 repolarization of the cardiac action potential. Although a high-resolution cryo-EM structure is available for its depolarized (open) state, the structure surprisingly did not feature many functionally important interactions established by previous biochemical and electrophysiology experiments. Using molecular dynamics flexible fitting (MDFF), we refined the structure and recovered the missing functionally relevant salt bridges in hERG in its depolarized state. We also performed electrophysiology experiments to confirm the functional relevance of a novel salt bridge predicted by our refinement protocol. Our work shows how refinement of a high-resolution cryo-EM structure helps to bridge the existing gap between the structure and function in the voltage-sensing domain (VSD) of hERG.  相似文献   

2.
The bacterial mechanosensitive channel of large conductance, MscL, is one of the best characterized mechanosensitive channels serving as a paradigm for how proteins can sense and transduce mechanical forces. The physiological role of MscL is that of an emergency release valve that opens a large pore upon a sudden drop in the osmolarity of the environment. A crystal structure of a closed state of MscL shows it as a homopentamer, with each subunit consisting of two transmembrane domains (TM). There is consensus that the TM helices move in an iris like manner tilting in the plane of the membrane while gating. An N-terminal amphipathic helix that lies along the cytoplasmic membrane (S1), and the portion of TM2 near the cytoplasmic interface (TM2ci), are relatively close in the crystal structure, yet predicted to be dynamic upon gating. Here we determine how these two regions interact in the channel complex, and study how these interactions change as the channel opens. We have screened 143 double-cysteine mutants of E. coli MscL for their efficiency in disulfide bridging and generated a map of protein-protein interactions between these two regions. Interesting candidates have been further studied by patch clamp and show differences in channel activity under different redox potentials; the results suggest a model for the dynamics of these two domains during MscL gating.  相似文献   

3.
The bacterial mechanosensitive channel of large conductance, MscL, is one of the best characterized mechanosensitive channels serving as a paradigm for how proteins can sense and transduce mechanical forces. The physiological role of MscL is that of an emergency release valve that opens a large pore upon a sudden drop in the osmolarity of the environment. A crystal structure of a closed state of MscL shows it as a homopentamer, with each subunit consisting of two transmembrane domains (TM). There is consensus that the TM helices move in an iris like manner tilting in the plane of the membrane while gating. An N-terminal amphipathic helix that lies along the cytoplasmic membrane (S1), and the portion of TM2 near the cytoplasmic interface (TM2ci), are relatively close in the crystal structure, yet predicted to be dynamic upon gating. Here we determine how these two regions interact in the channel complex, and study how these interactions change as the channel opens. We have screened 143 double-cysteine mutants of E. coli MscL for their efficiency in disulfide bridging and generated a map of protein-protein interactions between these two regions. Interesting candidates have been further studied by patch clamp and show differences in channel activity under different redox potentials; the results suggest a model for the dynamics of these two domains during MscL gating.  相似文献   

4.
We introduce an approach based on the recently introduced functional mode analysis to identify collective modes of internal dynamics that maximally correlate to an external order parameter of functional interest. Input structural data can be either experimentally determined structure ensembles or simulated ensembles, such as molecular dynamics trajectories. Partial least-squares regression is shown to yield a robust solution to the multidimensional optimization problem, with a minimal and controllable risk of overfitting, as shown by extensive cross-validation. Several examples illustrate that the partial least-squares-based functional mode analysis successfully reveals the collective dynamics underlying the fluctuations in selected functional order parameters. Applications to T4 lysozyme, the Trp-cage, the aquaporin channels Aqy1 and hAQP1, and the CLC-ec1 chloride antiporter are presented in which the active site geometry, the hydrophobic solvent-accessible surface, channel gating dynamics, water permeability (p(f)), and a dihedral angle are defined as functional order parameters. The Aqy1 case reveals a gating mechanism that connects the inner channel gating residues with the protein surface, thereby providing an explanation of how the membrane may affect the channel. hAQP1 shows how the p(f) correlates with structural changes around the aromatic/arginine region of the pore. The CLC-ec1 application shows how local motions of the gating Glu(148) couple to a collective motion that affects ion affinity in the pore.  相似文献   

5.
Molecular design of PhoE porin and its functional consequences   总被引:18,自引:0,他引:18  
The three-dimensional structure of PhoE porin from Escherichia coli, negatively stained with uranyl acetate, has been determined by electron crystallographic techniques to a resolution of about 18 A. The structure shows that PhoE porin consists of trimeric stain-filled channels as the basic unit. The trimeric channels converge as they transverse the membrane but they do not merge. Our three-dimensional structure of PhoE porin indicates that there is a short, narrower segment of channel, which extends beyond the visible strain-filled portion of the channel. The map of glucose-embedded PhoE porin in projection normal to the membrane has also been determined to a resolution of 6.5 A. The projected map shows trimeric ring-like structures, which are presumably cylindrical domains of beta-sheet. At the 3-fold symmetry axis of the trimer, there is a low density region, which is suggested to be a site of lipopolysaccharide that is required for channel and bacteriophage receptor activities. The structural model of the PhoE monomer consists of a flattened cylinder with a large water-filled vestibule about 35 A long with an elliptically shaped opening that is 27 A along the major axis and 18 A along the minor axis. The vestibule has a narrower extension about 10 A long with an average diameter of about 10 A. The vestibule wall is formed by beta-sheet, which may have a large fraction of the beta-strands oriented normal to membrane. Our structural model provides a clue as to how the surface charges on the outer membrane may regulate the permeation of ionic solutes through the channel.  相似文献   

6.
The SecA ATPase forms a functional complex with the protein-conducting SecY channel to translocate polypeptides across the bacterial cell membrane. SecA recognizes the translocation substrate and catalyzes its unidirectional movement through the SecY channel. The recent crystal structure of the Thermotoga maritima SecA-SecYEG complex shows the ATPase in a conformation where the nucleotide-binding domains (NBDs) have closed around a bound ADP-BeFx complex and SecA's polypeptide-binding clamp is shut. Here, we present the crystal structure of T. maritima SecA in isolation, determined in its ADP-bound form at 3.1 Å resolution. SecA alone has a drastically different conformation in which the nucleotide-binding pocket between NBD1 and NBD2 is open and the preprotein cross-linking domain has rotated away from both NBDs, thereby opening the polypeptide-binding clamp. To investigate how this clamp binds polypeptide substrates, we also determined a structure of Bacillus subtilis SecA in complex with a peptide at 2.5 Å resolution. This structure shows that the peptide augments the highly conserved β-sheet at the back of the clamp. Taken together, these structures suggest a mechanism by which ATP hydrolysis can lead to polypeptide translocation.  相似文献   

7.
More than three years have passed since the first structure of a potassium channel protein revealed fundamental molecular details of a platform for ion-selective conduction. Recent efforts have turned to understanding what this structure tells us about potassium channel structure and function in general and, most importantly, which questions remain unanswered. Successes in solving membrane protein structures are still hard won and slow. High-resolution studies of cytoplasmic channel domains and channel-associated proteins, the most tractable entry points for dissecting large, complex eukaryotic channels, are revealing a modularity of function commonly seen in many other biological systems. Studies of these domains bring into sharp focus issues of channel regulation, how these domains and associated proteins are coupled to the transmembrane domains to influence channel function, and how ion channels are integrated into cellular signaling pathways.  相似文献   

8.
ATP-sensitive potassium (K(ATP)) channels conduct potassium ions across cell membranes and thereby couple cellular energy metabolism to membrane electrical activity. Here, we report the heterologous expression and purification of a functionally active K(ATP) channel complex composed of pore-forming Kir6.2 and regulatory SUR1 subunits, and determination of its structure at 18 A resolution by single-particle electron microscopy. The purified channel shows ATP-ase activity similar to that of ATP-binding cassette proteins related to SUR1, and supports Rb(+) fluxes when reconstituted into liposomes. It has a compact structure, with four SUR1 subunits embracing a central Kir6.2 tetramer in both transmembrane and cytosolic domains. A cleft between adjacent SUR1s provides a route by which ATP may access its binding site on Kir6.2. The nucleotide-binding domains of adjacent SUR1 appear to interact, and form a large docking platform for cytosolic proteins. The structure, in combination with molecular modelling, suggests how SUR1 interacts with Kir6.2.  相似文献   

9.
RNase J is a key member of the β-CASP family of metallo-β-lactamases involved in the maturation and turnover of RNAs in prokaryotes. The B.?subtilis enzyme possesses both 5'-3' exoribonucleolytic and endonucleolytic activity, an unusual property for a ribonuclease. Here, we present the crystal structure of T.?thermophilus RNase J bound to a 4 nucleotide RNA. The structure reveals an RNA-binding channel that illustrates how the enzyme functions in 5'-3' exoribonucleolytic mode and how it can function as an endonuclease. A second, negatively charged tunnel leads from the active site, and is ideally located to evacuate the cleaved nucleotide in 5'-3' exonucleolytic mode. We show that B.?subtilis RNase J1, which shows processive behavior on long RNAs, behaves distributively for substrates less than 5 nucleotides in length. We propose a model involving the binding of the RNA to the surface of the β-CASP domain to explain the enzyme's processive action.  相似文献   

10.
In the cyanobacterial photosystem II (PSII), the O4-water chain in the D1 and CP43 proteins, a chain of water molecules that are directly H-bonded to O4 of the Mn4Ca cluster, is linked with a channel that connects the protein bulk surface along with a membrane-extrinsic protein subunit, PsbU (O4-PsbU channel). The cyanobacterial PSII structure also shows that the O1 site of the Mn4Ca cluster has a chain of H-bonded water molecules, which is linked with the channel that proceeds toward the bulk surface via PsbU and PsbV (O1-PsbU/V channel). Membrane-extrinsic protein subunits PsbU and PsbV in cyanobacterial PSII are replaced with PsbP and PsbQ in plant PSII. However, these four proteins have no structural similarity. It remains unknown whether the corresponding channels also exist in plant PSII, because water molecules are not identified in the plant PSII cryo-electron microscopy (cryo-EM) structure. Using the cyanobacterial and plant PSII structures, we analyzed the channels that proceed from the Mn4Ca cluster. The cyanobacterial O4-PsbU and O1-PsbU/V channels were structurally conserved as the channel that proceeds along PsbP toward the protein bulk surface in the plant PSII (O4-PsbP and O1-PsbP channels, respectively). Calculated protonation states indicated that in contrast to the original geometry of the plant cryo-EM structure, protonated PsbP-Lys166 may form a salt-bridge with ionized D1-Glu329 and protonated PsbP-Lys173 may form a salt-bridge with ionized PsbQ-Asp28 near the O1-PsbP channel. The existence of these channels might explain the molecular mechanism of how PsbP can interact with the Mn4Ca cluster.  相似文献   

11.
Takamatsu A  Fujii T  Endo I 《Bio Systems》2000,55(1-3):33-38
The plasmodium of the true slime mold, Physarum polycephalum, which shows various nonlinear oscillatory phenomena, for example, in its thickness, protoplasmic streaming and concentration of intracellular chemicals, can be regarded as a collective of nonlinear oscillators. The plasmodial oscillators are interconnected by microscale tubes whose dimensions can be closely related to the strength of interaction between the oscillators. Investigation of the collective behavior of the oscillators under the conditions in which the interaction strength can be systematically controlled gives significant information on the characteristics of the system. In this study, we proposed a living model system of a coupled oscillator system in the Physarum plasmodium. We patterned the geometry and dimensions of the microscale tube structure in the plasmodium by a microfabricated structure (microstructure). As the first step, we constructed a two-oscillator system for the plasmodium that has two wells (oscillator part) and a channel (coupling part). We investigated the oscillation behavior by monitoring the thickness oscillation of the plasmodium in the microstructure with various channel widths. It was found that the oscillation behavior of two oscillators dynamically changed depending on the channel width. Based on the results of measurements of the tube dimensions and the velocity of the protoplasmic streaming in the tube, we discuss how the channel width relates to the interaction strength of the coupled oscillator system.  相似文献   

12.
Voltage-gated K+ channels underlie the electrical excitability of cells. Each subunit of the functional tetramer consists of the tandem fusion of two modules, an N-terminal voltage-sensor and a C-terminal pore. To investigate how sensor coupling to the pore generates voltage-dependent channel opening, we solved the crystal structure and characterized the function of a voltage-gated K+ channel pore in a lipid membrane. The structure of a functional channel in a membrane environment at 3.1 Å resolution establishes an unprecedented connection between channel structure and function. The structure is unique in delineating an ion-occupied ready to conduct selectivity filter, a confined aqueous cavity, and a closed activation gate, embodying a dynamic entity trapped in an unstable closed state.  相似文献   

13.
The Cys-loop receptor family of ligand-gated ion channels (LGICs) play a key role in synaptic transmission in the central nervous system of animals. Recent advances have led to the elucidation of two crystal structures of related prokaryotic LGICs and the electron micrograph derived structure of the acetylcholine receptor from Torpedo marmorata. Here, we review the structural and biochemical data that form our understanding of the structure of the channel pore. We introduce original data from the glycine receptor using the substituted-cysteine accessibility technique and show that while the helical structure of the segment that surrounds the channel pore is generally agreed, the location of the channel gate, the pore diameter and the structure that forms the entry to the channel pore are likely to differ between receptors. The fundamental structural differences between anion and cation selective receptors and how these differences are related to the pore structure are also considered.  相似文献   

14.
Ionotropic glutamate receptors (iGluRs) are modular proteins that contain ion channel permeable to different cations including calcium. The physiological role of iGluRs is mainly defined by the fact that currents conducted by their channels underlie communication between neurons in the majority of synapses in our brain. Knowing the structure and function of iGluR channel will not only give us a clue to how our brain works but also may help us to develop drugs for the treatment of multiple neurological disorders. Here I give a brief historical overview of the progress made in studies of iGluR channel structure and function that started more than two decades ago with studies of ion channel block. The article is published in the original.  相似文献   

15.
The primary structure of a novel putative subunit of the mouse glutamate receptor channel, designated as delta 1, has been deduced by cloning and sequencing the cDNA. The delta 1 subunit shows 21-25% amino acid sequence identity with previously characterized rodent glutamate receptor channel subunits and thus may represent a new subfamily of the glutamate receptor channel.  相似文献   

16.
Recent advances in structural biology underlying mechanisms of channel gating have strengthened our knowledge about how K+ channels can be inter-convertible between conductive and non-conductive states. We have reviewed and combined mutagenesis with biochemical, biophysical and structural information in order to understand the critical roles of the pore residues in stabilizing the pore structure and channel open state. We also discuss how the latest knowledge on the K+ channel KcsA may provide a step towards better understanding of distinct pore stabilizing differences among diversified K+ channels.  相似文献   

17.
Molecular characterization of T-type calcium channels   总被引:6,自引:0,他引:6  
Molecular cloning of the low voltage-gated, T-type, calcium channel family opened new avenues of research into their structure-function, distribution, pharmacology, and regulation. Cloning of mammalian cDNAs led to the identification of three T-channel genes: CACNA1G, encoding Cav3.1; CACNA1H, encoding Cav3.2; and CACNA1I, encoding Cav3.3. This allowed sequencing of these genes in absence epilepsy patients, and the identification of single nucleotide polymorphisms (SNPs) that alter channel activity. Their distribution in thalamic nuclei, coupled with the physiological role they play in thalamic oscillations, leads to the conclusion that SNPs in T-channel genes may contribute to neurological disorders characterized by thalamocortical dysrhythmia, such as generalized epilepsy. This section reviews the structure of T-channels, how splicing affects structure and function, how SNPs alter channel activity, and how high voltage-activated auxiliary subunits affect T-channels.  相似文献   

18.
Zheng N  Wang P  Jeffrey PD  Pavletich NP 《Cell》2000,102(4):533-539
Ubiquitin-protein ligases (E3s) regulate diverse cellular processes by mediating protein ubiquitination. The c-Cbl proto-oncogene is a RING family E3 that recognizes activated receptor tyrosine kinases, promotes their ubiquitination by a ubiquitin-conjugating enzyme (E2) and terminates signaling. The crystal structure of c-Cbl bound to a cognate E2 and a kinase peptide shows how the RING domain recruits the E2. A comparison with a HECT family E3-E2 complex indicates that a common E2 motif is recognized by the two E3 families. The structure reveals a rigid coupling between the peptide binding and the E2 binding domains and a conserved surface channel leading from the peptide to the E2 active site, suggesting that RING E3s may function as scaffolds that position the substrate and the E2 optimally for ubiquitin transfer.  相似文献   

19.
Understanding the mechanism of the M2 proton channel of influenza A is crucially important to both basic research and drug discovery. Recently, the structure was determined independently by high-resolution NMR and X-ray crystallography. However, the two studies lead to completely different drug-binding mechanisms: the X-ray structure shows the drug blocking the pore from inside; whereas the NMR structure shows the drug inhibiting the channel from outside by an allosteric mechanism. Which one of the two is correct? To address this problem, we conducted an in-depth computational analysis. The conclusions drawn from various aspects, such as energetics, the channel-gating dynamic process, the pKa shift and its impact on the channel, and the consistency with the previous functional studies, among others, are all in favour to the allosteric mechanism revealed by the NMR structure. The findings reported here may stimulate and encourage new strategies for developing effective drugs against influenza A, particularly in dealing with the drug-resistant problems.  相似文献   

20.
Electrical excitability is a fundamental property of the neuromuscular systems of metazoans. The varied response of neurons to electrical excitation is largely accounted for by a diverse set of voltage-gated potassium (KV) channels in the excitable membrane. The complete structure of a KV channel is not yet available. However, recent structural biological experiments have begun to provide new insight into how specific KV channels are formed and regulated, and how they function and interact with other proteins. In particular, the selectivity of KV channels for K+ and suggestions as to how these structural elements might assemble into a functional KV channel are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号