首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Studies of the water relations of potassium deficient sugarbeet plants (Beta vulgaris L.) revealed two factors for stomatal closure. One component of stomatal closure was reversible by floating leaf discs on distilled water to relieve the water deficit in the leaves; the other component was reversible in the light by floating the leaf discs on KCl solution for 1 hour or more. Potassium-activated stomatal opening in the light was observed when the guard cells were surrounded by their normal environment of epidermal and mesophyll cells, just as observed by previous workers for epidermal strips. Leaf water potentials, like stomatal apertures, appear to be strongly related to leaf potassium concentration. Potassium-deficient plants have a greatly decreased root permeability to water, and the implications of this effect on stomatal aperture and leaf water potential are discussed. In contrast, petiole permeability to water is unaffected by potassium treatment.  相似文献   

2.
The gas exchange of the upper fully expanded leaf of the root parasite Striga hermonthica and of its host Sorghum bicolor was measured under wet and dry conditions to identify the mechanisms of the devastating effects of the parasite on its hosts under drought. The short-term water stress severely reduced photosynthetic rate in infected sorghum, but less in S. hermonthica. Soil water stress did not affect leaf respiration rate in either S. hermonthica or infected sorghum. This suggests that under dry conditions both infected sorghum and S. hermonthica decreased autotrophic carbon gain. The transpiration rate of S. hermonthica, a major driving force for assimilate uptake from the host, was higher and less affected by water stress than that of infected sorghum. Stomatal density on the abaxial surfaces of the leaves was higher in S. hermonthica than in sorghum. Both S. hermonthica infection and water stress decreased stomatal conductance of the sorghum leaves. S. hermonthica, irrespective of soil water status, had greater stomatal aperture on the adaxial and abaxial surfaces of its leaves than infected sorghum. These results indicate that the higher transpiration rate of S. hermonthica even under water stress, achieved through higher stomatal density on the abaxial surfaces of the leaves and greater stomatal aperture on both surfaces of the leaves, may induce the maintenance of water and solute transfers from the host to the parasite leading to severe damage to the host under drought.  相似文献   

3.
Stomatal behavior in response to drought has been the focus of intensive research, but less attention has been paid to stomatal density. In this study, 5-week-old maize seedlings were exposed to different soil water contents. Stomatal density and size as well as leaf gas exchange were investigated after 2-, 4- and 6-week of treatment, which corresponded to the jointing, trumpeting, and filling stages of maize development. Results showed that new stomata were generated continually during leaf growth. Reduced soil water content significantly stimulated stomatal generation, resulting in a significant increase in stomatal density but a decrease in stomatal size and aperture. Independent of soil water conditions, stomatal density and length in the trumpeting and filling stages were greater than in the jointing stage. Irrespective of growth stage, severe water deficit significantly reduced stomatal conductance (G s), decreasing the leaf transpiration rate (T r) and net photosynthetic rate (P n). Stomatal density was significantly negatively correlated with both P n and T r but more strongly with T r, so the leaf instantaneous water use efficiency (WUE i ) correlated positively with stomatal density. In conclusion, drought led to a significant increase in stomatal density and a reduction in stomatal size and aperture, resulting in decreased P n and T r. Because the negative correlation of stomatal density to T r was stronger than that to P n, leaf WUE i tended to increase.  相似文献   

4.
Initially closed stomata in isolated leaf epidermal peelings ofCalotropis procera, Prosopis cineraria andTephrosia purpurea, opened when incubated in distilled water in light or in darkness. Water-induced open stomata closed down on incubation in abscisic acid (0.01 ppm) solution within half an hour. Sodium chloride induced the opening of stomatal aperture. NaCl-induced open stomata also completely closed down when incubated in abscisic acid solution, but open again when transferred to NaCl.  相似文献   

5.
Hydroponic-grown seedlings of aspen (Populus tremuloides Michx.) were used to investigate how low root temperatures (5°C) affect stomatal conductance and water relations. An isohydric manner of the stomatal behaviour was found with the seedlings when their roots were subjected to the low temperature. Stomatal conductance rapidly and dramatically reduced in response to the low root temperature, while the xylem water potential did not significantly alter. Under the low root temperature, pH value of the xylem sap increased from 6.15 to 6.72 within the initial 4 h, while abscisic acid (ABA) concentration increased by the eighth hour of treatment. K+ concentration of the xylem sap significantly decreased within the 8th h and then reversed by the 24th h. The ion change was accompanied by a decrease and then an increase in the electrical conductivity, and an increase and then a decrease in the osmotic potential. The tempo of physiological responses to the low root temperature suggests that the rapid pH change of the xylem sap was the initial factor which triggered stomatal closure in low temperature-treated seedlings, and that the role of the more slowly accumulating ABA was likely to reinforce the stomatal closure. Xylem sap from the seedlings subjected low root temperature affected stomatal aperture on leaf discs when they were floated on the sap solution. The stomatal aperture correlated (P = 0.006) with the changed pattern of [K+] in the sap while the range of pH or ABA found in the xylem sap did not influence stomatal aperture of leaf discs in solution. The effect of xylem sap on stomatal aperture on leaf discs was different from on stomatal conductance in the intact seedlings. Comparison was made with previous study with the soil-grown seedlings.  相似文献   

6.
Wettability of the leaf surface, surface tension of the liquid, and stomatal morphology control penetration of stomata by liquids. The critical surface tension of the lower leaf surface of Zebrina purpusii Brückn. was estimated to be 25 to 30 dyne cm−1. Liquids having a surface tension less than 30 dyne cm−1 gave zero contact angle on the leaf surface and infiltrated stomata spontaneously while liquids having a surface tension greater than 30 dyne cm−1 did not wet the leaf surface and failed to infiltrate stomata. Considering stomata as conical capillaries, we were able to show that with liquids giving a finite contact angle, infiltration depended solely on the relationship between the magnitude of the contact angle and the wall angle of the aperture. Generally, spontaneous infiltration of stomata will take place when the contact angle is smaller than the wall angle of the aperture wall. The degree of stomatal opening (4, 6, 8, or 10 μm) was of little importance. Cuticular ledges present at the entrance to the outer vestibule and between the inner vestibule and substomatal chamber resulted in very small if not zero wall angles, and thus played a major role in excluding water from the intercellular space of leaves. We show why the degree of stomatal opening cannot be assessed by observing spontaneous infiltration of stomata by organic liquids of low surface tension.  相似文献   

7.
Though mulberry (Morus alba) tree shows great adaptations to various climate conditions, their leaf water status and photosynthesis are sensitive to climate changes. In the current study, seven widely planted mulberry cultivars in Chongqing, Southwest China, were selected to analyze leaf cuticular wax characteristics, gas exchange index, post-harvest leaf water status and their relationships, aiming to provide new theory in screening high resistant mulberry cultivars. Mulberry trees formed rounded cap-type idioblasts on the adaxial leaf surface. Film-like waxes and granule-type wax crystals covered leaf surfaces, varying in crystal density among cultivars. The stomatal aperture on the abaxial surface of cultivars with high wax amount was smaller than that of cultivars with low wax amount. The amount of total wax was negatively correlated with the net photosynthetic rate (P N), transpiration rate (E) and stomatal conductance (g s) and positively correlated with the moisture retention capacity. It suggested that both cuticular wax and stomatal factor might be involved in regulating water loss in mulberry leaves under field conditions. The variability in moisture retention capacity and cuticular wax characteristics might be important in evaluating and screening mulberry cultivars for increasing silk quality and silkworm productivity.  相似文献   

8.
We investigated, under laboratory and field conditions, the possibility that increasing abscisic acid (ABA) concentrations and decreasing water potentials can interact in their effects on stomata. One experiment was carried out with epidermal pieces of Commelina communis incubated in media with a variety of ABA and polyethylene glycol concentrations. In the media without ABA, incubation in solutions with water potentials between −0.3 and −1.5 megapascals had no significant effect on stomatal aperture. Conversely, the sensitivity of stomatal aperture to ABA was trebled in solutions at −1.5 megapascals compared with sensitivity at −0.3 megapascals. The effect of the change in sensitivity was more important than the absolute effect of ABA at the highest water potential. In a field experiment, sensitivity of maize stomatal conductance to the concentration of ABA in the xylem sap varied strongly with the time of the day. We consider that the most likely explanation for this is the influence of a change in leaf or epidermal water potential that accompanies an increase in irradiance and saturation deficit as the day progresses. These observations suggest that epidermal water relations may act as a modulator of the responses of stomata to ABA. We argue that such changes must be taken into account in studies or modeling of plant responses to drought stress.  相似文献   

9.
Summary Water and nitrogen regimes of Larrea tridentata shrubs growing in the field were manipulated during an annual cycle. Patterns of leaf water status, leaf water relations characteristics, and stomatal behavior were followed concurrently. Large variations in leaf water status in both irrigated and nonirrigated individuals were observed. Predawn and midday leaf water potentials of nonirrigated shrubs were lowest except when measurements had been preceded by significant rainfall. Despite the large seasonal variation in leaf water status, reasonably constant, high levels of turgor were maintained. Pressure-volume curve analysis suggested that changes in the bulk leaf osmotic potential at full turgor were small and that nearly all of the turgor adjustment was due to tissue elastic adjustment. The increase in tissue elasticity with increasing water deficit manifested itself as a decrease in the relative water content at zero turgor and as a decrease in the tissue bulk elastic modulus. Because of large hydration-induced displacement in the osmotic potential and relative water content at zero turgor, it was necessary to use shoots in their natural state of hydration for pressure-volume curve determinations. Large diurnal and seasonal differences in maximum stomatal conductance were observed, but could not easily be attributed to variations in leaf water potential or leaf water relations characteristics such as the turgor loss point. The single factor which seemed to account for most of the diurnal and seasonal differences in maximum stomatal conductance between individual shrubs was an index of soil/root/ shoot hydraulic resistance. Daily maximum stomatal conductance was found to decrease with increasing soil/root/ shoot hydraulic resistance. This pattern was most consistent if the hydraulic resistance calculation was based on an estimate of total canopy transpiration rather than the more commonly used transpiration per unit leaf area. The reasons for this are discussed. It is suggested that while stomatal aperture necessarily represents a major physical resistance controlling transpiration, plant hydraulic resistance may represent the functional resistance through its effects on stomatal aperture.  相似文献   

10.
Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H2O2 content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.  相似文献   

11.
R. Lösch 《Oecologia》1977,29(1):85-97
Summary Stomatal responses in isolated epidermis strips of the fern Polypodium vulgare to humidity and temperature were investigated. Movements were observed under a microscope, the epidermis being mounted in a climatized chamber above a water table, the gap between tissue and water being similar to that between epidermis and mesophyll in the intact leaf. Stomatal aperture increases as the water vapor deficit is decreased. The relationship is approximately linear until full aperture is reached. The speed of stomatal movement depends on the magnitude of the change in saturation deficit. Temperature also exerts a strong influence on stomatal aperture. Low temperature causes closure. Maximal opening occurs between about 20° C and 28° C. Higher temperature leads to a slight reduction in aperture. The temperature range corresponding to maximum apertures depends on the temperature that prevailed during cultivation of the plants. The data are used to construct three-dimensional graphs showing stomatal behavior under the simultaneous influence of temperature and humidity for plants of different precultivation. The possible mechanisms that lead to the observed stomatal reactions are discussed.  相似文献   

12.
Whole bean (var. “Eastern Butterwax”) plants and isolated cells were used to investigate possible mechanisms of action of glyphosate [N-(phosphonomethyl)glycine]. Results showed that glyphosate was quickly absorbed by the whole plant but not by individual cells and that it caused a rapid reduction in leaf dry matter accumulation, leaf expansion, leaf angle, and stomatal aperture without affecting the water status of the plant. Glyphosate also caused a rapid reduction in cellular uptake of 86Rb and 32P which preceded its detrimental effects on photosynthesis, RNA and protein synthesis, and respiration of isolated cells. This reduction in ion absorption was not due to a loss of membrane integrity, decrease in energy supply or chelation of ions. It was concluded that glyphosate was directly inhibiting the ion absorption process of bean leaf cells.  相似文献   

13.
In the field, supplemental application of N fertilizer to rice (Oryza sativa) shortly before the beginning of heading stage increases leaf N content and enhances photosynthesis during the grain-filling period. In search of varietal differences in leaf gas exchange in response to supplemental N application, we examined 13 rice varieties grown in the field during two successive years. The varieties included japonica and indica varieties, both of which are widely grown in Japan. The response to supplemental N application could not be separated clearly between variety groups; some of the japonica varieties, but none of the indica varieties, exhibited significant increase in stomatal conductance (g s) after supplemental N application. Supplemental N was more effective to increase stomatal aperture in the varieties with inherently lower g s. Varieties that showed greater response of g s to supplemental N application might be able to adjust their stomatal aperture with appropriate N control. Although the internal-to-ambient CO2 mole fraction ratio and the leaf carbon isotopic composition (δ13C) differed among varieties as a result of variations in stomatal aperture and the CO2 requirement of mesophyll, supplemental N application barely influenced these parameters, because it only moderately affected stomatal aperture. Since δ13C tended to increase with increasing number of days from transplantation to heading stage in japonica varieties, δ13C values were more sensitive to differences in growth rate between years than to N application.  相似文献   

14.
An empirical model for stomatal conductance (g), proposed by Leuning (1995, this issue) as a modification of Ball, Woodrow & Berry's (1987) model, is interpreted in terms of a simple, steady-state model of guard cell function. In this model, stomatal aperture is a function of the relative turgor between guard cells and epidermal cells. The correlation between g and leaf surface vapour pressure deficit in Leuning's model is interpreted in terms of stomatal sensing of the transpiration rate, via changes in the gradient of total water potential between guard cells and epidermal cells. The correlation between g, CO2 assimilation rate and leaf surface CO2 concentration in Leuning's model is interpreted as a relationship between the corresponding osmotic gradient, irradiance, temperature, intercellular CO2 concentration and stomatal aperture itself. The explicit relationship between osmotic gradient and stomatal aperture (possibly describing the effect of changes in guard cell volume on the membrane permeability for ion transport) results in a decrease in the transpiration rate in sufficiently dry air. Possible extension of the guard cell model to include stomatal responses to soil water status is discussed.  相似文献   

15.
The impact of xylem cavitation and embolism on leaf (K leaf) and stem (K stem) hydraulic conductance was measured in current-year shoots of Cercis siliquastrum L. (Judas tree) using the vacuum chamber technique. K stem decreased at leaf water potentials (ΨL) lower than ?1.0 MPa, while K leaf started to decrease only at ΨL L K leaf changes. Field measurements of leaf conductance to water vapour (g L) and ΨL showed that stomata closed when ΨL decreased below the ΨL threshold inducing loss of hydraulic conductance in the leaf. The partitioning of hydraulic resistances within shoots and leaves was measured using the high-pressure flow meter method. The ratio of leaf to shoot hydraulic resistance was about 0.8, suggesting that stem cavitation had a limited impact on whole shoot hydraulic conductance. We suggest that stomatal aperture may be regulated by the cavitation-induced reduction of hydraulic conductance of the soil-to-leaf water pathway which, in turn, strongly depends on the hydraulic architecture of the plant and, in particular, on leaf hydraulics.  相似文献   

16.
Cyclic fluctuations in stomatal aperture, transpiration rate and leaf water potential under constant environmental conditions have been investigated in intact plants of cotton, pepper, and sunflower. Stomatal aperture and transpiration rate were least when leaf water potential was high and were greatest when leaf water potential was low. Lowest leaf water potential values lagged behind the occurrence of highest transpiration rates, and high overall resistance to water flow occurred in cycling plants. Both of these are considered essential for the occurrence of persistent cyclic behaviour. Hydropassive opening of stomates as the leaves wilted facilitated cycling in cotton and pepper, but not in sunflower, where hydropassive opening did not occur. The roots were identified as the site of the major resistance to water flow in the plant and further experiments directly showed the importance of this root resistance in initiating cycling by causing water stress in the leaves as the stomates opened. Root resistance varied diurnally, becoming increasingly important at night. Root resistance naturally rose to high levels in cotton. High levels were induced in pepper or sunflower by having the roots in deionized water for several days or by anoxia. Quantitative measurements of overall plant resistance were made from leaf water potential and transpiration rate data. The results are discussed and it suggested that plant resistance may indirectly be of importance in the movement of water from the plant to the air.  相似文献   

17.
Apparatus and experimental techniques are discussed for usein the investigation of transpiration rate of leaves as controlledby stomatal aperture and leaf water content. The leaf chambers used and the methods adopted for the estimationof the water transpired are described. The designs of the porometer cups used for the different typesof leaves (Pelargonium and wheat) employed in the work are described.To obviate the difficulty that stomata within the cup behaveabnormally, the design employed makes possible a removal ofthe cup from the leaf except during the short periods requiredto estimate stomatal resistance to air flow at intervals duringthe course of an experiment. In these experiments the water content of the leaf is changedat will by interrupting the water-supply and re-establishingit to permit recovery from wilting. The methods used to carryout this cycle of operations are fully dealt with. Determinationsof the transpiration and absorption rates during the experimentand of the final leaf water content make it possible to followchanges in leaf water content throughout the experiment. An account is given of the methods used for varying the speedof flow, the humidity, and the CO2 concentration of the airstreams.  相似文献   

18.
The chlorinal-1 (ch1-1) mutant of Arabidopsis thaliana lacks the light-harvesting complexes in photosystem II (LHCII) due to deficiency of ability to synthesize chlorophyll (Chl) b. To investigate if a lack of LHCII affects plant growth and water loss, the Chl content, Chl fluorescence, glutathione (GSH) content, plant growth, water loss and stomatal aperture were measured using wild-type (WT) and ch1-1 mutant plants. The leaves of ch1-1 mutants accumulated significantly lower Chl content, Chl fluorescence and GSH content than WT plants. Plant growth and the leaf area of ch1-1 plants were also lower when compared to WT plants. The ch1-1 plant showed delayed flowering and higher a number of rosette leaves compared to the WT plants. The treatment of N-acetyl-cysteine increased Chl content and Chl fluorescence in leaves of both plants. Stomatal aperture was significantly lower in guard cells of the ch1-1 mutant than that of WT plants. Dark treatment increased stomatal closure which was corrected followed by the light treatment. Abscisic acid (ABA)-induced stomatal aperture was significantly lower in ch1-1 mutant than WT plants. Water loss through stomatal opening in ch1-1 plants was significantly lower than WT plants regardless of ABA treatment. This study suggests that a lack of LHCII might control plant growth and water loss in ch1-1 mutant of Arabidopsis thaliana.  相似文献   

19.
Fischer RA 《Plant physiology》1968,43(12):1947-1952
This paper reports a consistent and large opening response to light + CO2-free air in living stomata of isolated epidermal strips of Vicia faba. The response was compared to that of non-isolated stomata in leaf discs floating on water; stomatal apertures, guard cell solute potentials and starch contents were similar in the 2 situations. To obtain such stomatal behavior, it was necessary to float epidermal strips on dilute KCl solutions. This suggests that solute uptake is necessary for stomatal opening.

The demonstration of normal stomatal behavior in isolated epidermal strips provides a very useful system in which to investigate the mechanism of stomatal opening. It was possible to show independent responses in stomatal aperture to light and to CO2-free air.

  相似文献   

20.
Summary It has previously been reported that canopy water loss by cowpea (Vigna unguiculata) decreases with small depletions in soil water. In these studies, under field conditions, it was demonstrated that with small changes in soil water status leaf conductance of cowpea decreases in a manner which is consistent with the sensitive regulation of canopy water loss.However, treatments which differed in leaf conductance, and presumably stomatal aperture, had similar leaf water potentials. It is hypothesized that the stomatal closure which results from soil water depletion is mediated by changes in root water status through effects on the flow of information from root to shoot. An efficient mechanism of this type could be partially responsible for the extreme drought avoidance exhibited by this plant.Dedicated to Dr. K. Springer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号