首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila focal adhesion kinase (Dfak) gene is a single-copy nuclear gene. Previous study revealed that Drosophila melanogaster and Drosophila simulans had lost an intron precisely within the tyrosine kinase (TyK) domain of this gene. However, this did not happen in several other Drosophila species, including Drosophila elegans, Drosophila ficusphila, Drosophila biarmipes, Drosophila jambulina, Drosophila prostipennis, Drosophila takahashii, and Drosophila pseudoobscura. In the current study, homologous sequences of Drosophila sechellia, Drosophila mauritiana, Drosophila yakuba, Drosophila teissieri, Drosophila santomea, and Drosophila erecta were amplified by polymerase chain reaction, and further sequencing analysis indicated that these species were missing a TyK domain intron, indicating they were closely related. The relationship of the D. melanogaster species group was reconstructed using TyK domain nucleotide sequences. The resulting phylogenetic tree revealed that these 8 species were the most related species in the melanogaster group. These results strongly support previously proposed classifications based on morphological and molecular data.  相似文献   

2.
Betrán E  Long M 《Genetics》2003,164(3):977-988
A direct approach to investigating new gene origination is to examine recently evolved genes. We report a new gene in the Drosophila melanogaster subgroup, Drosophila nuclear transport factor-2-related (Dntf-2r). Its sequence features and phylogenetic distribution indicate that Dntf-2r is a retroposed functional gene and originated in the common ancestor of D. melanogaster, D. simulans, D. sechellia, and D. mauritiana, within the past 3-12 million years (MY). Dntf-2r evolved more rapidly than the parental gene, under positive Darwinian selection as revealed by the McDonald-Kreitman test and other evolutionary analyses. Comparative expression analysis shows that Dntf-2r is male specific whereas the parental gene, Dntf-2, is widely expressed in D. melanogaster. In agreement with its new expression pattern, the Dntf-2r putative promoter sequence is similar to the late testis promoter of beta2-tubulin. We discuss the possibility that the action of positive selection in Dntf-2r is related to its putative male-specific functions.  相似文献   

3.
R. M. Kliman  J. Hey 《Genetics》1993,133(2):375-387
A 1.9-kilobase region of the period locus was sequenced in six individuals of Drosophila melanogaster and from six individuals of each of three sibling species: Drosophila simulans, Drosophila sechellia and Drosophila mauritiana. Extensive genealogical analysis of 174 polymorphic sites reveals a complex history. It appears that D. simulans, as a large population still segregating very old lineages, gave rise to the island species D. mauritiana and D. sechellia. Rather than considering these speciation events as having produced ``sister' taxa, it seems more appropriate to consider D. simulans a parent species to D. sechellia and D. mauritiana. The order, in time, of these two phylogenetic events remains unclear. D. mauritiana supports a large number of polymorphisms, many of which are shared with D. simulans, and so appears to have begun and persisted as a large population. In contrast, D. sechellia has very little variation and seems to have experienced a severe population bottleneck. Alternatively, the low variation in D. sechellia could be due to recent directional selection and genetic hitchhiking at or near the per locus.  相似文献   

4.
Horizontal transmission has been well documented as a major mechanism for the dissemination of mariner-like elements (MLEs) among species. Less well understood are mechanisms that limit vertical transmission of MLEs resulting in the "spotty" or discontinuous distribution observed in closely related species. In this article we present evidence that the genome of the common ancestor of the melanogaster species subgroup of Drosophila contained an MLE related to the mellifera (honey bee) subfamily. Horizontal transmission, approximately 3-10 MYA, is strongly suggested by the observation that the sequence of the MLE in Drosophila erecta is 97% identical in nucleotide sequence with that of an MLE in the cat flea, Ctenocephalides felis. The D. erecta MLE has a spotty distribution among species in the melanogaster subgroup. The element has a high copy number in D. erecta and D. orena, a moderate copy number in D. teissieri and D. yakuba, and was apparently lost ("stochastic loss") in the lineage leading to D. melanogaster, D. simulans, D. mauritiana, and D. sechellia. In D. erecta, most copies are concentrated in the heterochromatin. Two copies from D. erecta, denoted De12 and De19, were cloned and sequenced, and they appear to be nonfunctional ("vertical inactivation"). It therefore appears that the predominant mode of MLE evolution is vertical inactivation and stochastic loss balanced against occasional reinvasion of lineages by horizontal transmission.   相似文献   

5.
Harr B  Schlötterer C 《Genetica》2004,120(1-3):71-77
Forty-seven microsatellite loci were amplified in Drosophila melanogaster, Drosophila simulans, Drosophila mauritiana and Drosophila sechellia. The two cosmopolitan species D. melanogaster and D. simulans were found to be the most variable ones, followed by D. mauritiana and D. sechellia. A model based clustering algorithm was applied to the population samples of D. melanogaster, D. simulans and D. sechellia. No evidence for population substructure was detected within species--most likely due to insufficient power. A Markov chain Monte Carlo method developed for demographic inference based on microsatellites provided unambiguous evidence for population contraction in D. melanogaster, D. simulans and D. sechellia, despite that the D. melanogaster and D. simulans population samples were of non-African origin and represented recently expanded populations.  相似文献   

6.
7.
The repeating units of the histone gene cluster containing the H1, H2A, H2B and H4 genes were amplified by PCR from the Drosophila melanogaster species subgroup, i.e., D. yakuba, D. erecta, D. sechellia, D. mauritiana, D. teissieri and D. orena. The PCR products were cloned and their nucleotide sequences of about 4.6-4.8kbp were determined to elucidate the mechanism of molecular evolution of the histone gene family. The heterogeneity among the histone gene repeating units was 0.6% and 0.7% for D. yakuba and D. sechellia, respectively, indicating the same level of heterogeneity as in the H3 gene region of D. melanogaster. Divergence of the genes among species even in the most closely related ones was much greater than the heterogeneity among family members, indicating a concerted mode of evolution for the histone gene repeating units. Among the species in the D. melanogaster species subgroup, the histone gene regions as well as 3rd codon position of the coding region showed nearly the same GC contents. These results suggested that the previous conclusion on analysis of the H3 gene regions, the gene family evolution in a concerted fashion, holds true for the whole histone gene repeating unit.  相似文献   

8.
The DNA sequences of the Adh genes of three members of the Drosophila melanogaster species subgroup have been determined. This completes the Adh sequences of the eight species of this subgroup. Two species, D. yakuba and D. teissieri, possess processed Adh pseudogenes. In all of the species of the subgroup, a gene of unknown function, Adhr, is located about 300 bp 3' to Adh. Although this gene is experiencing a higher rate of synonymous substitution than Adh, it is more constrained at the amino acid level. Phylogenetic relationships between all eight members of the melanogaster subgroup have been analyzed using a variety of methods. All analyses suggested that the D. yakuba and D. teissieri pseudogenes have a single common ancestor, rather than evolving independently in each species, and that D. melanogaster is the sister species to D. simulans, D. sechellia, and D. mauritiana. The evolutionary relationships of the latter three species remain equivocal.   相似文献   

9.
Kern AD  Jones CD  Begun DJ 《Genetics》2004,167(2):725-735
Accessory gland proteins are a major component of Drosophila seminal fluid. These proteins have a variety of functions and may be subject to sexual selection and/or antagonistic evolution between the sexes. Most population genetic data from these proteins are from D. melanogaster and D. simulans. Here, we extend the population genetic analysis of Acp genes to the other simulans complex species, D. mauritiana and D. sechellia. We sequenced population samples of seven Acp's from D. mauritiana, D. sechellia, and D. simulans. We investigated the population genetics of these genes on individual simulans complex lineages and compared Acp polymorphism and divergence to polymorphism and divergence from a set of non-Acp loci in the same species. Polymorphism and divergence data from the simulans complex revealed little evidence for adaptive protein evolution at individual loci. However, we observed a dramatically inflated index of dispersion for amino acid substitutions in the simulans complex at Acp genes, but not at non-Acp genes. This pattern of episodic bursts of protein evolution in Acp's provides the strongest evidence to date that the population genetic mechanisms driving Acp divergence are different from the mechanisms driving evolution at most Drosophila genes.  相似文献   

10.
Evolution of the Transposable Element Mariner in Drosophila Species   总被引:3,自引:0,他引:3       下载免费PDF全文
K. Maruyama  D. L. Hartl 《Genetics》1991,128(2):319-329
The distribution of the transposable element mariner was examined in the genus Drosophila. Among the eight species comprising the melanogaster species subgroup, the element is present in D. mauritiana, D. simulans, D. sechellia, D. yakuba and D. teissieri, but it is absent in D. melanogaster, D. erecta and D. orena. Multiple copies of mariner were sequenced from each species in which the element occurs. The inferred phylogeny of the elements and the pattern of divergence were examined in order to evaluate whether horizontal transfer among species or stochastic loss could better account for the discontinuous distribution of the element among the species. The data suggest that the element was present in the ancestral species before the melanogaster subgroup diverged and was lost in the lineage leading to D. melanogaster and the lineage leading to D. erecta and D. orena. This inference is consistent with the finding that mariner also occurs in members of several other species subgroups within the overall melanogaster species group. Within the melanogaster species subgroup, the average divergence of mariner copies between species was lower than the coding region of the alcohol dehydrogenase (Adh) gene. However, the divergence of mariner elements within species was as great as that observed for Adh. We conclude that the relative sequence homogeneity of mariner elements within species is more likely a result of rapid amplification of a few ancestral elements than of concerted evolution. The mariner element may also have had unequal mutation rates in different lineages.  相似文献   

11.
K Lineruth 《Genetica》1988,78(1):33-37
The protein synthesis pattern of a set of stage and tissue specific proteins has previously been described in Drosophila melanogaster. The analysis of this set of follicle cell proteins (Fc proteins) is here extended to cover several sibling species of Drosophila melanogaster, namely D. simulans, D. mauritiana, D. erecta and D. yakuba. Even though a similar set of proteins were synthesized in these species, minor differences in size of the proteins were found between the species. Some of the species exhibited variation within species.  相似文献   

12.
Two regions of the genome, a 1-kbp portion of the zeste locus and a 1.1- kbp portion of the yolk protein 2 locus, were sequenced in six individuals from each of four species: Drosophila melanogaster, D. simulans, D. mauritiana, and D. sechellia. The species and strains were the same as those of a previous study of a 1.9-kbp region of the period locus. No evidence was found for recent balancing or directional selection or for the accumulation of selected differences between species. Yolk protein 2 has a high level of amino acid replacement variation and a low level of synonymous variation, while zeste has the opposite pattern. This contrast is consistent with information on gene function and patterns of codon bias. Polymorphism levels are consistent with a ranking of effective population sizes, from low to high, in the following order: D. sechellia, D. melanogaster, D.mauritiana, and D. simulans. The apparent species relationships are very similar to those suggested by the period locus study. In particular, D. simulans appears to be a large population that is still segregating variation that arose before the separation of D. mauritiana and D. sechellia. It is estimated that the separation of ancestral D. melanogaster from the other species occurred 2.5-3.4 Mya. The separations of D. sechellia and D. mauritiana from ancestral D. simulans appear to have occurred 0.58- 0.86 Mya, with D. mauritiana having diverged from ancestral D. simulans 0.1 Myr more recently than D. sechellia.   相似文献   

13.
Lerat E  Burlet N  Biémont C  Vieira C 《Gene》2011,473(2):100-109
Transposable elements (TEs) are indwelling components of genomes, and their dynamics have been a driving force in genome evolution. Although we now have more information concerning their amounts and characteristics in various organisms, we still have little data from overall comparisons of their sequences in very closely-related species. While the Drosophila melanogaster genome has been extensively studied, we have only limited knowledge regarding the precise TE sequences in the genomes of the related species Drosophila simulans, Drosophila sechellia and Drosophila yakuba. In this study we analyzed the number and structure of TE copies in the sequenced genomes of these four species. Our findings show that, unexpectedly, the number of TE insertions in D. simulans is greater than that in D. melanogaster, but that most of the copies in D. simulans are degraded and in small fragments, as in D. sechellia and D. yakuba. This suggests that all three species were invaded by numerous TEs a long time ago, but have since regulated their activity, as the present TE copies are degraded, with very few full-length elements. In contrast, in D. melanogaster, a recent activation of TEs has resulted in a large number of almost-identical TE copies. We have detected variants of some TEs in D. simulans and D. sechellia, that are almost identical to the reference TE sequences in D. melanogaster, suggesting that D. melanogaster has recently been invaded by active TE variants from the other species. Our results indicate that the three species D. simulans, D. sechellia, and D. yakuba seem to be at a different stage of their TE life cycle when compared to D. melanogaster. Moreover, we show that D. melanogaster has been invaded by active TE variants for several TE families likely to come from D. simulans or the ancestor of D. simulans and D. sechellia. The numerous horizontal transfer events implied to explain these results could indicate introgression events between these species.  相似文献   

14.
The origins and divergence of Drosophila simulans and close relatives D. mauritiana and D. sechellia were examined using the patterns of DNA sequence variation found within and between species at 14 different genes. D. sechellia consistently revealed low levels of polymorphism, and genes from D. sechellia have accumulated mutations at a rate that is approximately 50% higher than the same genes from D. simulans. At synonymous sites, D. sechellia has experienced a significant excess of unpreferred codon substitutions. Together these observations suggest that D. sechellia has had a reduced effective population size for some time, and that it is accumulating slightly deleterious mutations as a result. D. simulans and D. mauritiana are both highly polymorphic and the two species share many polymorphisms, probably since the time of common ancestry. A simple isolation speciation model, with zero gene flow following incipient species separation, was fitted to both the simulans/mauritiana divergence and the simulans/sechellia divergence. In both cases the model fit the data quite well, and the analyses revealed little evidence of gene flow between the species. The exception is one gene copy at one locus in D. sechellia, which closely resembled other D. simulans sequences. The overall picture is of two allopatric speciation events that occurred quite near one another in time.  相似文献   

15.
Mitochondrial DNA evolution in themelanogaster species subgroup ofDrosophila   总被引:11,自引:0,他引:11  
Detailed restriction maps (40 cleavage sites on average) of mitochondrial DNAs (mtDNAs) from the eight species of the melanogaster species subgroup of Drosophila were established. Comparison of the cleavage sites allowed us to build a phylogenetic tree based on the matrix of nucleotide distances and to select the most parsimonious network. The two methods led to similar results, which were compared with those in the literature obtained from nuclear characters. The three chromosomally homosequential species D. simulans, D. mauritiana, and D. sechellia are mitochondrially very related, but exhibit complex phylogenetic relationships. D. melanogaster is their closest relative, and the four species form a monophyletic group (the D. melanogaster complex), which is confirmed by the shared unusual length of their mt genomes (18-19 kb). The other four species of the subgroup (D. yakuba, D. teissieri, D. erecta, and D. orena) are characterized by a much shorter mt genome (16-16.5 kb). The monophyletic character of the D. yakuba complex, however, is questionable. Two species of this complex, D. yakuba and D. teissieri, are mitochondrially indistinguishable (at the level of our investigation) in spite of their noticeable allozymic and chromosomal divergence. Finally, mtDNA distances were compared with the nuclear-DNA distances thus far established. These sequences seem to evolve at rather similar rates, the mtDNA rate being barely double that of nuclear DNA.  相似文献   

16.
To study the rate and pattern of nucleotide substitution in mitochondrial DNA (mtDNA), we cloned and sequenced a 975-bp segment of mtDNA from Drosophila melanogaster, D. simulans, and D. mauritiana containing the genes for three transfer RNAs and parts of two protein- coding genes, ND2 and COI. Statistical analysis of synonymous substitutions revealed a predominance of transitions over transversions among the three species, a finding differing from previous results obtained from a comparison of D. melanogaster and D. yakuba. The number of transitions observed was nearly the same for each species comparison, including D. yakuba, despite the differences in divergence times. However, transversions seemed to increase steadily with increasing divergence time. By contrast, nonsynonymous substitutions in the ND2 gene showed a predominance of transversions over transitions. Most transversions were between A and T and seemed to be due to some kind of mutational bias to which the A + T-rich mtDNA of Drosophila species may be subject. The overall rate of nucleotide substitution in Drosophila mtDNA appears to be slightly faster (approximately 1.4 times) than that of the Adh gene. This contrasts with the result obtained for mammals, in which the mtDNA evolves approximately 10 times faster than single-copy nuclear DNA. We have also shown that the start codon of the COI gene is GTGA in D. simulans and GTAA in D. mauritiana. These codons are different from that of D. melanogaster (ATAA).   相似文献   

17.
18.
Chen Y  Dai H  Chen S  Zhang L  Long M 《PloS one》2011,6(4):e18853
Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ~800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.  相似文献   

19.
We have investigated the distribution of sequences homologous to Bari-1, a Tc1-like transposable element first identified in Drosophila melanogaster, in 87 species of the Drosophila genus. We have also isolated and sequenced Bari-1 homologues from D. simulans, D. mauritiana, and D. sechellia, the species constituting with D. melanogaster the melanogaster complex, and from D. diplacantha and D. erecta, two phylogenetically more distant species of the melanogaster group. Within the melanogaster complex the Bari-1 elements are extremely similar to each other, showing nucleotide identity values of at least 99.3%. In contrast, Bari-1-like elements from D. diplacantha and D. erecta are on average only 70% similar to D. melanogaster Bari-1 and are usually defective due to nucleotide deletions and/or insertions in the ORFs encoding their transposases. In D. erecta the defective copies are all located in the chromocenter and on chromosome 4. Surprisingly, while D. melanogaster Bari-1 elements possess 26-bp inverted terminal repeats, their D. diplacantha and D. erecta homologues possess long inverted terminal repeats similar to the terminal structures observed in the S elements of D. melanogaster and in several other Tc1-like elements of different organisms. This finding, together with the nucleotide and amino acid identity level between D. diplacantha and D. erecta elements and Bari-1 of D. melanogaster, suggests a common evolutionary origin and a rapid diversification of the termini of these Drosophila Tc1-like elements.  相似文献   

20.
We characterize a newly discovered morphological difference between species of the Drosophila melanogaster subgroup. The muscle of Lawrence (MOL) contains about four to five fibers in D. melanogaster and Drosophila simulans and six to seven fibers in Drosophila mauritiana and Drosophila sechellia. The same number of nuclei per fiber is present in these species but their total number of MOL nuclei differs. This suggests that the number of muscle precursor cells has changed during evolution. Our comparison of MOL development indicates that the species difference appears during metamorphosis. We mapped the quantitative trait loci responsible for the change in muscle fiber number between D. sechellia and D. simulans to two genomic regions on chromosome 2. Our data eliminate the possibility of evolving mutations in the fruitless gene and suggest that a change in the twist might be partly responsible for this evolutionary change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号