首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In a pot experiment with 26 calcareous soils, the critical limit of Fe in soils and plants was evaluated. DTPA-extractable Fe was found significanty correlated with Bray's per cent yield in rice. The Fe2+ (iron) in rice and lentil was also found significantly correlated with DTPA-extractable Fe as well as Bray's per cent yield showing thereby the superiority of Fe2+ (iron) in leaves over DTPA-extractable soil Fe to differentiate Fe responsive soils from non-responsive ones. The total Fe content in plant tissues does not seem correlated with the occurrence of Fe deficiency. The threshold values of DTPA-extractable soil Fe and Fe2+ (iron) in rice and lentil leaves were 6.95, 44 and 74.5 ppm, respectively below which appreciable responses to Fe application were observed. The optimum Fe level for these soils was found to be 10 ppm in which the dry matter yield response in all the 19 rice soils and 16 lentil soils ranged from 14.28 to 56.16 (Av. 25.75%) and 13.31 to 53.97 (Av. 22.47%), respectively.  相似文献   

2.
The inorganic core of the iron storage protein, ferritin, is recognized as being analogous to the poorly crystalline iron mineral, ferrihydrite (Fh). Fh is also abundant in soils where it is central to the redox cycling of particular soil contaminants and trace elements. In geochemical circles, it is recognized that Fh can undergo Fe(II)-catalyzed transformation to form more crystalline iron minerals, vastly altering the reactivity of the iron oxide and, in some cases, the redox poise of the system. Of relevance to both geochemical and biological systems, we investigate here if the naturally occurring reducing agent, ascorbate, can effect such an Fe(II)-catalyzed transformation of Fh at 25?°C and circumneutral pH. The transformation of ferrihydrite to possible secondary Fe(III) mineralization products was quantified using Fourier transform infrared (FTIR) spectroscopy, with supporting data obtained using X-ray absorbance spectroscopy (XAS) and X-ray diffraction (XRD). Whilst the amount of Fe(II) formed in the presence of ascorbate has resulted in Fh transformation in previous studies, no transformation of Fh to more crystalline Fe(III) (oxyhydr)oxides was observed in this study. Further experiments indicated this was due to the ability of ascorbate to inhibit the formation of goethite, lepidocrocite and magnetite. The manner in which ascorbate associated with Fh was investigated using FTIR and total organic carbon (TOC) analysis. The majority of ascorbate was found to adsorb to the Fh surface under anoxic conditions but, under oxic conditions, ascorbate was initially adsorbed then became incorporated within the Fe(III) (oxyhydr)oxide structure (i.e., co-precipitated) over time.  相似文献   

3.
Iron toxicity is a major soil constraint to rice (Oryza sative L.) cropping in highland swamps of Burundi. These swamps have a wide range of carbon content. This study aims at determining the influence of carbon content and redox conditions on the release of iron from Fe-bearing minerals. The pe-pH pairs distribution and oxalate dissolution data strongly suggest a control of Fe2+ activity by a pool of poorly crystallized ferric oxides. Flooding results in high values of KCl-extractable Fe (up to 22 cmolc kg-1) being released from that pool. The iron release is positively correlated with organic matter. On the other hand, highly organic, peaty soils have large CEC and their adsorbed Fe fraction remains relatively low. As the exchangeable Fe fraction has previously been correlated with Fe toxicity to rice, we may conclude that very organic (> 25% C), peaty soils exhibit a lower Fe toxicity hazard than soils with intermediate carbon content (10–25%).  相似文献   

4.
Summary Laboratory experiments were conducted to study the effect of algal growth on the change of (I) pH, (II) available phosphorus and (III) solubility of iron and manganese content in five waterlogged alluvial rice soils of West Bengal, India. The results showed that the algal growth initially caused an increase in the soil pH, which later declined to the original value in some of the soils. The available phosphorus content decreased upto 90 days of their growth and began to increase towards the later period of incubation. The drastic fall of water soluble plus exchaneable manganese content of the soils due to algal growth was accompanied by similar increase in reducible manganese content. No appreciable change in water soluble plus exchangeable ferrous iron content was encountered but theN-NH4OAC(pH 3) extractable iron due to algal growth progressively decreased with the progress of the incubation period.  相似文献   

5.
Pandeya  S.B.  Singh  A.K.  Dhar  P. 《Plant and Soil》1998,198(2):117-125
The influence of fulvic acid (FA) on the porous system self diffusion coefficient (Dp) of Fe in Calciorthent soils of Bihar, India, was determined with the half cell technique. Significantly higher values of Dp were observed when Fe was applied as Fe–FA to the soil compared to FeCl3. The capacity factor of Fe decreased considerably due to its complexation by fulvic acid, resulting in an increase in the Dp of Fe. The organic carbon content of the soils correlated positively with Dp of Fe while it showed a negative relationship with active CaCO3 and the clay content of soils. A soil culture system simulating acquisition of Fe by rice was developed to investigate transport of Fe from the soil solution to the surface of the plant roots through diffusion and mass flow. Mass flow contributed only 5–9% of the total Fe uptake by rice, with the remainder being ascribed to diffusion and root interception. A significant relationship ( r =0.96**) between Dp- and Fe-uptake by rice was observed. The uptake of Fe by the crop and the percentage of tissue iron content derived from fertilizer were higher in the case of Fe–FA in comparison with FeCl3, indicating the superiority of organically complexed Fe fertilizers over inorganic salts.  相似文献   

6.
Both solution culture and pot experiments were performed to investigate (a) the effects of external Fe (II) concentrations and forms on the formation of iron plaque on the roots of rice (Oryza sativa) and subsequent P adsorption on iron plaque and shoot P concentrations and (b) the effects of soil moisture regimes on the formation of iron plaque and P adsorption on root surfaces and P accumulation in shoots. The results showed that iron plaque was significantly increased with increasing Fe2+ concentrations in the solution culture. The amounts of P adsorbed on the iron plaque were increased significantly with external Fe2+ concentrations. Although shoot P concentration was not significantly affected by Fe2+ treatment after incubation for 2 days, it was significantly increased in the Fe‐treated plants compared with Fe‐deprived ones after incubation for 4 days. Soil culture experiment showed that the formation of iron plaque on root surfaces was promoted by exogenous iron, with greater amount of iron plaque being formed by addition of ferric hydroxide than of ferric oxide. Phosphorus adsorption on iron plaque also increased with the addition of iron oxides, and increasing soil P increased the amounts of P associated with the iron plaque and shoot P concentration. The amounts of iron plaque were almost sixfold higher under flooding condition than under field capacity condition. Plants pretreated under flooding condition generally had higher shoot P concentrations when they were transplanted to solutions with varying P levels, and this was most pronounced in the treatment with highest solution P concentration. The results suggest that iron plaque acts as a nutrient reservoir for phosphorus in the rhizosphere and helps enhance P acquisition by rice.  相似文献   

7.
Chen  Jixing  Xuan  Jiaxiang  Du  Chenglin  Xie  Jianchang 《Plant and Soil》1997,188(1):131-137
With four soils differing in K supplying power and with four rice cultivars (Oryza sativa L.) differing in K uptake kinetic parameters, the relationship between K fertilizer application and soil redox status in rhizosphere and; the distribution of ferrous iron and other toxic substances on the root surface and in the rhizosphere; and the effect of K supply on uptake of reduced iron by rice plants have been studied.The results show that K application on K-deficient soils reduced the content of active reducing substances and ferrous iron in the soil, raised the soil redox potential in the rhizosphere, increased the Eh value of rice roots and lowered the content of iron in the rice plants. These effects of K varied with different rice cultivars. When no K fertilizer was applied, active reducing substances and ferrous iron in rhizosphere soils were decreased more by the rice cultivars absorbing K strongly (e.g. Shanyou 64) than by cultivars absorbing K weakly (e.g. Zhongguo 91). Therefore, the diminution of the toxic substances by K application in the weakly K-absorbing cultivars was more significant.The observation of a rhizobox separated by a nylon screen showed that appreciably more iron oxides, compared with the control, were deposited at or adjacent to the root surfaces of the rice plant supplied with K fertilizer, fully demonstrating the relationship between K nutrition and the total oxidizing power of rice plants. According to the distribution of active reducing substances and ferrous iron, the oxidizing range of the rice root extended in K application treatment a few centimeters away from the root plane. K application to rice affected the soil redox status in rhizosphere in many ways. The main effect was an increase of the oxidizing power of the rice root. As a result, the value of soil Eh was increased, the contents of active reducing substances and ferrous iron were lowered, as well as the number of oxygen consuming microorganisms.  相似文献   

8.
W. L. Lindsay 《Plant and Soil》1991,130(1-2):27-34
The solubility of Fe in soils is largely controlled by Fe oxides; ferrihydrite, amorphous ferric hydroxide, and soil-Fe are generally believed to exert the major control. Fe(III) hydrolysis species constitute the major Fe species in solution. Other inorganic Fe complexes are present, but their concentrations are much less than the hydrolysis species. Organic complexes of Fe including those of organic acids like citrate, oxalate, and malate contribute slightly to increased Fe solubility in acid soils, but not in alkaline soils.The most important influence that organic matter has on the solubilization of Fe is through reduction. Respiration of organic matter creates reduction microsites in soil where Fe2+ concentrations increase above those of the Fe(III) hydrolysis species. Fluctuating redox conditions in these microsites are conducive to the formation of a mixed valency ferrosic hydroxide. This metastable precipitate maintains an elevated level of soluble inorganic Fe for prolonged periods and increases Fe availability to plants. The release of reducing agents and acids next to roots, as well as the production of siderophores by microorganisms within the rhizosphere, contribute to the solubilization and increased availability of Fe to plants.  相似文献   

9.
Solubility and dissolution of iron oxides   总被引:6,自引:0,他引:6  
In most soils, FeIII oxides (group name) are the common source of Fe for plant nutrition. Since this Fe has to be supplied via solution, the solubility and the dissolution rate of the Fe oxides are essential for the Fe supply. Hydrolysis constants and solubility products (Ksp) describing the effect of pH on FeIII ion concentration in solution are available for the well-known Fe oxides occurring in soils such as goethite, hematite, ferrihydrite. Ksp values are usually extremely low ((Fe3+)·(OH)3=10–37–10–44). However, for each mineral type, Ksp may increase by several orders of magnitude with decreasing crystal size and it decreases with increasing Al substitution assuming ideal solid solution between the pure end-members. Based on such calculations a poorly crystalline goethite with a crystal size of 5 nm may well reach the solubility of ferrihydrite. The variations in Ksp are of relevance for soils because crystal size and Al substitution of soil Fe oxides vary considerably and can now be determined relatively easily.The concentration of Fe2+ in soil solutions is often much higher than that of Fe(III) ions. Therefore, redox potential strongly influences the activity of FeII. At a given pH and Eh, the activity of FeII is higher the higher Ksp of the FeIII oxide and thus also varies with the type of Fe oxide present.Besides the solubility, it is the dissolution rate which governs the supply of soluble Fe to the plant roots. Dissolution of Fe oxides takes place either by protonation, complexation or, most important, by reduction. Numerous dissolution rate studies with various FeIII oxides were conducted in strong mineral acids (protonation) and they have shown that besides the Fe oxide species, crystal size and/or crystal order and substitution are important determinative factors. For example, in soils, small amounts of a more highly soluble meta- or instable Fe oxide such as ferrihydrite with a large specific surface (several hundred m2g–1) may be essential for the Fe supply to the plant root. Its higher dissolution rate can also be used to quantify its amount in soils. Ferrihydrite can be an important component in soils with high amounts of organic matter and/or active redox dynamics, whereas highly aerated and strongly weathered soils are usually very low in ferrihydrite. On the other hand, dissolution rates of goethites decrease as their Al substitution increases.Much less information exists on the rate of reductive and chelative dissolution of Fe oxides which generally simulate soil conditions better than dissolution by protonation. Here again, type of oxide, crystal size and substitution are important factors. Organic anions such as oxalate, which are adsorbed at the surface, may weaken the Fe3+-O bonds and thereby increase reductive dissolution. As often observed in weathering, the dissolution features of the crystals appear to follow zones of weakness in the crystal.  相似文献   

10.
Microbially reducible iron (water-soluble plus exchangeable forms) in three soils represented about 20% of the chemically reducible iron. The amount of iron reduced by microorganisms increased for about ten days to two weeks following flooding and thereafter remained constant. A similar trend was observed for the release of added Fe-59 in the soils following flooding, except that the reduction of labelled iron began earlier. In the more weathered soil, a higher proportion of the total iron was reduced by citrate-dithionite than in the relatively unweathered alluvial soils. Of labelled iron added, sequential reduction showed approximately 70% in the three soils was microbially reducible, an additional 20% was reduced by citrate-dithionite, and 10% of the labelled iron had moved into the residual form.  相似文献   

11.
Cucumber plants grown in hydroponics containing 10 μM Cd(II), Ni(II) and Pb(II), and iron supplied as Fe(III) EDTA or Fe(III) citrate in identical concentrations, were investigated by total-reflection X-ray fluorescence spectrometry with special emphasis on the determination of iron accumulation and distribution within the different plant compartments (root, stem, cotyledon and leaves). The extent of Cd, Ni and Pb accumulation and distribution were also determined. Generally, iron and heavy-metal contaminant accumulation was higher when Fe(III) citrate was used. The accumulation of nickel and lead was higher by about 20% and 100%, respectively, if the iron supply was Fe(III) citrate. The accumulation of Cd was similar. In the case of Fe(III) citrate, the total amounts of Fe taken up were similar in the control and heavy-metal-treated plants (27-31 μmol/plant). Further, the amounts of iron transported from the root towards the shoot of the control, lead- and nickel-contaminated plants were independent of the iron(III) form. Although Fe mobility could be characterized as being low, its distribution within the shoot was not significantly affected by the heavy metals investigated.  相似文献   

12.
Rice is one of the most important staple crops and efficient iron (Fe) adsorption during growth not only improves rice yield, but also enriches this essential micronutrient in rice grains to address Fe deficiency in humans. In this article, we review updates on research into the molecular mechanisms regulating Fe uptake from soil and its transport from roots to shoots to seeds in rice plants. Understanding the regulation and expression of genes involved in Fe homeostasis will benefit the development of variants with enhanced Fe utilization to improve rice output and quality.  相似文献   

13.
Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction   总被引:15,自引:0,他引:15  
Iron (Fe) has long been a recognized physiological requirement for life, yet for many microorganisms that persist in water, soils and sediments, its role extends well beyond that of a nutritional necessity. Fe(II) can function as an electron source for iron-oxidizing microorganisms under both oxic and anoxic conditions and Fe(III) can function as a terminal electron acceptor under anoxic conditions for iron-reducing microorganisms. Given that iron is the fourth most abundant element in the Earth's crust, iron redox reactions have the potential to support substantial microbial populations in soil and sedimentary environments. As such, biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars. Furthermore, the metabolic versatility of the microorganisms involved in these reactions has resulted in the development of biotechnological applications to remediate contaminated environments and harvest energy.  相似文献   

14.
Dissimilatory metal reducing bacteria (DMRB) catalyze the reduction of Fe(III) to Fe(II) in anoxic soils, sediments, and groundwater. Two-line ferrihydrite is a bioavailable Fe(III) oxide form that is exploited by DMRB as a terminal electron acceptor. A wide variety of biomineralization products result from the interaction of DMRB with 2-line ferrihydrite. Here we describe the state of knowledge on the biotransformation of synthetic 2-line ferrihydrite by laboratory cultures of DMRB using select published data and new experimental results. A facultative DMRB is emphasized ( Shewanella putrefaciens ) upon which most of this work has been performed. Key factors controlling the identity of the secondary mineral suite are evaluated including medium composition, electron donor and acceptor concentrations, ferrihydrite aging/recrystallization status, sorbed ions, and co-associated crystalline Fe(III) oxides. It is shown that crystalline ferric (goethite, hematite, lepidocrocite), ferrous (siderite, vivianite), and mixed valence (magnetite, green rust) iron solids are formed in anoxic, circumneutral DMRB incubations. Some products are well rationalized based on thermodynamic considerations, but others appear to result from kinetic pathways driven by ions that inhibit interfacial electron transfer or the precipitation of select phases. The primary factor controlling the nature of the secondary mineral suite appears to be the Fe(II) supply rate and magnitude, and its surface reaction with the residual oxide and other sorbed ions. The common observation of end-product mineral mixtures that are not at global equilibrium indicates that microenvironments surrounding respiring DMRB cells or the reaction-path trajectory (over Eh-pH space) may influence the identity of the final biomineralization suite.  相似文献   

15.
This study demonstrates that floodplain soils of the River Wupper, Germany, are seriously contaminated with metal(loid)s. We used an automated biogeochemical microcosm system allowing controlled variation of redox potential (EH) to assess the impact of pre-definite redox conditions on the dynamics of arsenic (As), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), antimony (Sb), and zinc (Zn) in homogenized soil material taken from an acid floodplain soil. The concentrations of Co, Cu, Mn, Ni, Sb, and Zn in soil solution were low at low EH, possibly due to the precipitation of metal sulfides, and increased with rising EH, presumably caused by their association with dissolved organic carbon (DOC). A significant positive correlation between metal/DOC-ratio and EH indicated that the binding of the metals to DOC shifted from stronger to weaker when EH rose. Decreasing As concentrations with increasing EH in soil solution indicated co-precipitation with Fe(hydr)oxides and/or oxidation of more soluble As(III) to less soluble As(V) during oxidation. The other studied elements seemed not to co-precipitate with newly formed Fe(hydr)oxides when EH rose, possibly due to the prevailing low pH. In the future, the specific role of DOC and sulfur chemistry on metal(loid) dynamics should be elucidated more fully, and similar studies should be conducted with additional frequently flooded soils worldwide to verify these results.  相似文献   

16.
Effects of two kinds of iron fertilizer, FeSO4 and EDTA·Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA·Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA·Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentra- tion in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA·Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentra- tion of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA·Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.  相似文献   

17.
The observed biological differences in safety and efficacy of intravenous (IV) iron formulations are attributable to physicochemical differences. In addition to differences in carbohydrate shell, polarographic signatures due to ferric iron [Fe(III)] and ferrous iron [Fe(II)] differ among IV iron formulations. Intravenous iron contains Fe(II) and releases labile iron in the circulation. Fe(II) generates toxic free radicals and reactive oxygen species and binds to bacterial siderophores and other in vivo sequestering agents. To evaluate whether differences in Fe(II) content may account for some observed biological differences between IV iron formulations, samples from multiple lots of various IV iron formulations were dissolved in 12 M concentrated HCl to dissociate and release all iron and then diluted with water to achieve 0.1 M HCl concentration. Fe(II) was then directly measured using ferrozine reagent and ultraviolet spectroscopy at 562 nm. Total iron content was measured by adding an excess of ascorbic acid to reduce Fe(III) to Fe(II), and Fe(II) was then measured by ferrozine assay. The Fe(II) concentration as a proportion of total iron content [Fe(III) + Fe(II)] in different lots of IV iron formulations was as follows: iron gluconate, 1.4 and 1.8 %; ferumoxytol, 0.26 %; ferric carboxymaltose, 1.4 %; iron dextran, 0.8 %; and iron sucrose, 10.2, 15.5, and 11.0 % (average, 12.2 %). The average Fe(II) content in iron sucrose was, therefore, ≥7.5-fold higher than in the other IV iron formulations. Further studies are needed to investigate the relationship between Fe(II) content and increased risk of oxidative stress and infections with iron sucrose.  相似文献   

18.

Background and aims

Limited information is available on comparing the iron plaque formation capabilities and their effect on arsenic (As) uptake by different rice plant genotypes grown in As-contaminated soils. This study investigates the effect of iron plaque on As uptake in different rice genotypes grown in As-contaminated soils from the Guandu Plain of northern Taiwan.

Methods

Twenty-eight rice genotypes including 14 japonica and 14 indica genotypes were used in this study. Rice seedlings were grown in As-contaminated soils for 38 days. The iron plaque formed on the rice roots were extracted using dithionite–citrate–bicarbonate. The concentrations of As, Fe, and P in soil solutions, iron plaque, and plants were measured. The speciation of As in the root’s iron plaque was determined by As K-edge X-ray absorption near-edge structure spectroscopy (XANES).

Results

The amounts of iron plaque formation on roots were significantly different among 28 tested rice genotypes, and 75.7–92.8 % of As uptake from soils could be sequestered in iron plaque. However, there were no significant negative correlations between the amounts of Fe or As in the iron plaque and the content of As accumulated in rice plants of tested genotypes. XANES data showed that arsenate was the predominant As species in iron plaque, and there were difference in the distribution of As species among different rice genotypes.

Conclusions

The iron plaque can sequester most of As uptake from soils no matter what rice genotypes used in this study. However, the iron plaque alone did not control the extent of As accumulation in rice plants from As-contaminated soils among 28 tested rice genotypes. Low As uptake genotypes of rice selected from this study can be recommended to be grown in the As-contaminated soils.  相似文献   

19.
Effects of two kinds of iron fertilizer, FeSO4 and EDTA·Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA·Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA·Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA·Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA·Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.  相似文献   

20.
Aerobic organisms are faced with a dilemma. Environmental iron is found primarily in the relatively inert Fe(III) form, whereas the more metabolically active ferrous form is a strong pro-oxidant. This conundrum is solved by the redox cycling of iron between Fe(III) and Fe(II) at every step in the iron metabolic pathway. As a transition metal ion, iron can be “metabolized” only by this redox cycling, which is catalyzed in aerobes by the coupled activities of ferric iron reductases (ferrireductases) and ferrous iron oxidases (ferroxidases).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号