首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oocytes at the dictyate stage young (8–14 weeks) and old (12–15 months) BALB/c mice were manually isolated and UV-irrdiated. They were cultured for 1 h in medium containing tritiated thymidine and chased for a furthur hour in cold thymidine medium before being incubated for 18–20 h in medium with no added thymidine. Oocytes which had developed to metaphase II were analysed following autoradiography. Pooled results from 14 replicate experiments revealed no significant age-related difference between the mean corrected grain count per cell [159.2 ± 8.5 (86 cells) for young mice and 164.6 ± 9.8 (70 cells) for the old animals]. Thus in the female mouse the oocyte's capacity to repair UV-induced damage is apparently maintained at a high level throughout reprodcutive life.  相似文献   

2.
5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA.   总被引:21,自引:6,他引:21       下载免费PDF全文
We examined the DNA of Saccharomyces cerevisiae by both HpaII-MspI restriction enzyme digestion and high-performance liquid chromatography analysis for the possible presence of 5-methylcytosine. Both of these methods failed to detect cytosine methylation within this yeast DNA; i.e., there is less than 1 5-methylcytosine per 3,100 to 6,000 cytosine residues.  相似文献   

3.
4.
5.
BRCA1 contributes to the response to UV irradiation. Utilizing its BRCT motifs, it is recruited during S/G2 to UV-damaged sites in a DNA replication-dependent but nucleotide excision repair (NER)-independent manner. More specifically, at UV-stalled replication forks, it promotes photoproduct excision, suppression of translesion synthesis, and the localization and activation of replication factor C complex (RFC) subunits. The last function, in turn, triggers post-UV checkpoint activation and postreplicative repair. These BRCA1 functions differ from those required for DSBR.  相似文献   

6.
DNA polymerase ζ is believed to be an essential constituent of DNA damage tolerance, comprising several pathways that allow the replication of DNA templates containing unrepaired damage. We wanted to better define the role of polymerase ζ in DNA damage tolerance in mammalian cells. To this aim we have investigated replication of ultraviolet light-damaged DNA templates in mouse embryonic fibroblasts deficient for Rev3, the catalytic subunit of polymerase ζ. We found that Rev3 is important for a post-replication repair pathway of helix-distorting [6-4]pyrimidine-pyrimidone photoproducts and, to a lesser extent, of cyclobutane pyrimidine dimers. Unlike its partner Rev1, Rev3 appears not to be involved in an immediate translesion synthesis pathway at a stalled replication fork. The deficiency of Rev3?/? MEFs in post-replication repair of different photoproducts contributes to the extreme sensitivity of these cells to UV light.  相似文献   

7.
8.
The distribution of UV-induced repair-replicated DNA patches among reiterated and unique murine and human DNA has been studied by molecular reassociation. DNA-DNA renaturation was employed to fractionate labeled repair-replicated and normal cellular DNA sequences according to their reiteration frequencies. Results indicate that repair replicated DNA patches are distributed uniformly within highly repeated, moderately repeated and single copy DNA sequences. This could be due to the random localization of UV-induced lesions and repairs in the cultured murine and human cells.  相似文献   

9.
Liu T  Chen H  Kim H  Huen MS  Chen J  Huang J 《DNA Repair》2012,11(2):131-138
BRCA1 carboxyl-terminal (BRCT) motifs are present in a number of proteins involved in DNA repair and/or DNA damage signaling pathways. The BRCT domain-containing protein BRCTx has been shown to interact physically with RAD18, an E3 ligase involved in postreplication repair and homologous recombination repair. However, the physiological relevance of the interaction between RAD18 and BRCTx is largely unknown. In this study, we showed that RAD18 interacts with BRCTx in a phosphorylation-dependent manner and that this interaction, mediated via highly conserved serine residues on the RAD18 C terminus, is required for BRCTx accumulation at DNA damage sites. Furthermore, we uncovered critical roles of the RAD18-BRCTx module in UV-induced DNA damage repair but not PCNA mono-ubiquitination or homologous recombination. Thus, our results suggest that RAD18 has an additional function in the surveillance of the UV-induced DNA damage response signal.  相似文献   

10.
Summary The centromere is the region within a chromosome that is required for proper segregation during mitosis and meiosis. Lesions in this sequence represent a unique type of damage, as loss of function could result in catastrophic loss of the genetic material of an entire chromosome. We have measured the induction by ultraviolet (UV) light of pyrimidine dimers in a 2550-bp restriction fragment that includes the centromere region of chromosome III in Saccharomyces cerevisiae. Yeast cells were exposed to ultraviolet light, cellular DNA was gently extracted, and subsequently treated with a UV-specific endonuclease to cleave all pyrimidine dimers. The sites of UV-specific nuclease scission within the centromere were determined by separating the DNA according to molecular weight, transferring the fragments to nitrocellulose, and hybridizing to a radiolabeled 624-bp fragment homologous to the centromere DNA from chromosome III. Several hotspots were identified in chromatin DNA from cells, as well as in irradiated deproteinized DNA. Double strand damage due to closely opposed pyrimidine dimers was also observed. At biological doses (35% survival) there are approximately 0.1 to 0.2 pyrimidine dimers per centromere. These dimers are efficiently repaired in the centromere and surrounding region.  相似文献   

11.
We recently demonstrated that mouse spermatozoa contain a mechanism to degrade their DNA into loop-sized fragments of about 50 kb, mediated by topoisomerase IIB, termed sperm chromatin fragmentation (SCF). SCF is often followed by a more complete digestion of the DNA with a sperm nuclease. When SCF-induced spermatozoa are injected into oocytes, the paternal pronuclei degrade their DNA after the initiation of DNA synthesis, but the maternal pronuclei are unaffected and replicate normally. Here, we tested whether the nuclease activity changes in spermatozoa of different maturation stages, and whether there is a functional relationship between the initiation of DNA synthesis and paternal DNA degradation induced by SCF in the zygote. We found that spermatozoa from the vas deferens have a much higher level of SCF activity than those from the cauda epididymis, suggesting that spermatozoa may acquire this activity in the vas deferens. Furthermore, paternal pronuclei formed in zygotes from injecting oocytes with SCF-induced vas deferens spermatozoa degraded their DNA, but this degradation could be inhibited by the DNA synthesis inhibitor, aphidicolin. Upon release from a 4 h aphidicolin-induced arrest, DNA synthesis was initiated in maternal pronuclei, while the paternal pronuclei degraded their DNA. Longer aphidicolin arrest resulted in the paternal pronuclei replicating their DNA, suggesting that delaying the initiation of DNA synthesis allowed the paternal pronuclei to overcome the SCF-induced DNA degradation pathway. These results suggest that the paternal DNA degradation, in oocytes fertilized with SCF-induced spermatozoa, is coupled to the initiation of DNA synthesis in newly fertilized zygotes.  相似文献   

12.
Solar UV-B radiation is an environmental factor which damage and destabilize genomes. UV-B-induced DNA lesions have cytotoxic and genotoxic effects on the cells of pro- and eucaryotes including plants. In addition, such lesions can cause gene mutations in plants. The products of the damages of cellular DNA caused by UV are examined in the present review and plant reparative pathways including photoreactivation, base excision repair and nucleotide excision repair are analyzed. The review deals as well with the mechanisms of plant DNA damage tolerance which allow to reduce the toxic effects of UV-B radiation.  相似文献   

13.
Vertebrate oocytes arrest in metaphase of the second meiotic division (MII), where they maintain a high cdc2/cyclin B activity and a stable, bipolar spindle because of cytostatic factor (CSF) activity. The Mos-MAPK pathway is essential for establishing CSF. Indeed, oocytes from the mos-/- strain do not arrest in MII and activate without fertilization, as do Xenopus laevis oocytes injected with morpholino oligonucleotides directed against Mos. In Xenopus oocytes, p90Rsk (ribosomal S6 kinase), a MAPK substrate, is the main mediator of CSF activity. We show here that this is not the case in mouse oocytes. The injection of constitutively active mutant forms of Rsk1 and Rsk2 does not induce a cell cycle arrest in two-cell mouse embryos. Moreover, these two mutant forms do not restore MII arrest after their injection into mos-/- oocytes. Eventually, oocytes from the triple Rsk (1, 2, 3) knockout present a normal CSF arrest. We demonstrate that p90Rsk is not involved in the MII arrest of mouse oocytes.  相似文献   

14.
Suppression of UV-induced apoptosis by the human DNA repair protein XPG   总被引:3,自引:0,他引:3  
The severe xeroderma pigmentosum/Cockayne syndrome (XP/CS) syndrome is caused by mutations in the XPB, XPD and XPG genes that encode the helicase subunits of TFIIH and the 3' endonuclease of nucleotide excision repair (NER). Because XPB and XPD have been implicated in p53-mediated apoptosis, we examined the possible involvement of XPG in this process. After ultraviolet light (UV) irradiation, primary fibroblasts of XP complementation group G (XP-G) individuals with CS enter apoptosis more readily than other NER-deficient cells, but this is unlinked to unrepaired damage. These XP-G/CS cells accumulate p53 post-UV but they fail to accumulate the 90/92 kDa isoforms of Mdm2 and their cellular distribution of Mdm2 is impaired. Apoptosis levels revert to wild type, Mdm2 90/92 kDa isoforms accumulate, and Mdm2 regains its normal post-UV nuclear location in transduced XP-G/CS cells expressing wild-type XPG, but not an XPG catalytic site mutant. These results suggest that XPG suppresses UV-induced apoptosis and that this suppression, most simply, requires its endonuclease function.  相似文献   

15.
Cyclic AMP is not detectable in Clostridium perfringens   总被引:3,自引:0,他引:3  
Cyclic AMP was not detected (less than 5 X 10(-9) M intracellular concentration) at any stage of growth or sporulation of two strains of Clostridium perfringens grown with or without methylxanthines. Only Bacillus and Lactobacillus, genera belonging to the same phylogenetic cluster, have previously exhibited undetectable levels of cyclic AMP.  相似文献   

16.
DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks(DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination(HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little is known regarding the key players of the HR repair pathway in oocytes. Here, we identified oocyte-specific gene Ooep as a novel key component of the HR repair pathway in mouse oocytes. OOEP was required for efficient ataxia telangiectasia mutated(ATM) kinase activation and Rad51 recombinase(RAD51) focal accumulation at DNA DSBs. Ooep null oocytes were defective in DNA DSB repair and prone to apoptosis upon exogenous DNA damage insults. Moreover, Ooep null oocytes exhibited delayed meiotic maturation.Therefore, OOEP played roles in preserving oocyte quantity and quality by maintaining genome stability.Ooep expression decreased with the advance of maternal age, suggesting its involvement in maternal aging.  相似文献   

17.
UV-damaged DNA-binding protein (UV-DDB) is essential for global genome nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers (CPD) and accelerates repair of 6-4 photoproducts (6-4PP). The high UV-induced skin cancer susceptibility of mice compared to man has been attributed to low expression of the UV-DDB subunit DDB2 in mouse skin cells. However, DDB2 knockout mice exhibit enhanced UVB skin carcinogenesis indicating that DDB2 protects mice against UV-induced skin cancer. To resolve these apparent contradictory findings, we systematically investigated the NER capacity of mouse fibroblasts and keratinocytes. Compared to fibroblasts, keratinocytes exhibited an increased level of UV-DDB activity, contained significantly higher levels of other NER proteins (i.e. XPC and XPB) and displayed efficient repair of CPD. At low UVB dosages, the difference in skin cancer susceptibility between DDB2 KO and wild type mice was even much more pronounced than previously reported with high dose UVB exposures. Hence, our observations show that mouse keratinocytes express sufficient levels of UV-DDB for efficient repair of photolesions and efficient protection against UV-induced skin cancer at physiological relevant UV exposure.  相似文献   

18.
Intranuclear localization of UV-induced DNA repair in human VA13 cells   总被引:2,自引:0,他引:2  
We have investigated the intranuclear localization of DNA-repair synthesis in G1-phase VA13 human cells. Ultraviolet-irradiated cells were permitted to perform unscheduled DNA synthesis in 3H-thymidine (3H-TdR) and then extracted with nonionic detergent and 2 M NaCl to produce nucleoids in which residual nuclear matrix was surrounded by an extended halo of DNA loops. Autoradiographic analysis of these structures permitted discrimination of DNA repair between the matrix and halo regions. Repair label in nucleoids prepared from cells after exposure to fluences of 2.5-30 J/m2 exhibited a dose-dependent association with the nuclear matrix, which ranged from 80% after 2.5 J/m2 to 50% after 30 J/m2. These results support the view that DNA repair is a nuclear matrix-associated process. This conclusion is in agreement with our preliminary study (Harless et al., 1983) and the results of McCready and Cook (1984) but contrasts with that of Mullenders et al. (1983). Questions concerning the differing experimental designs and their potential effects on the localization of DNA repair are discussed. The implications of these results to previous attempts to isolate chromatin factors associated with DNA repair are also considered.  相似文献   

19.
In UV-irradiated E. coli WP2 uvrA, deficient in excision repair of DNA with pyrimidine dimers, gamma-irradiation in low doses (radioadaptation) before UV-irradiation leads to the intensification of postreplication repair of DNA. This process in WP2 uvrA polA and uvrA lexA mutants is less than in WP2 uvrA cells, but in WP2 uvrA recA both postreplication repair and its radioadaptive intensification are absent. In E. coli AB1157 excising pyrimidine dimers the radioadaptive intensification of postreplication repair of DNA is expressed almost to the same extent as in WP2 uvrA. In GW2100 umuC mutant, deficient in DNA polymerase V, postreplication repair of DNA is expressed, but its radioadaptive intensification is absent, while in AB2463 recA13 both postreplication repair of DNA and radioadaptive intensification of postreplication repair of DNA are absent. The above data suggest that DNA polymerase I and LexA protein are needed for radioadaptive intensification of postreplication repair of DNA in uvrA strain, and DNA polymerase V is needed for radioadaptive intensification in E. coli AB1157, and that RecA protein is required for postreplication repair and radioadaptive intensification of postreplication repair of DNA.  相似文献   

20.
Postreplication DNA repair (PRR) in UV-irradiated Escherichia coli WP2 uvrA (tryptophan-dependent strain) and K12 AB1886 uvrA6 pre-irradiated by gamma-rays in low doses (radioadaptation, the first stress effect) has been investigated. PRR was found to be more effective after incubation in the growth medium (for 45-60 min) than in non-radioadapted cells: the repair of postreplication gaps increased by 6-15%. If cells of WP2 uvrA strain were incubated after UV-irradiation in media lacking tryptophan or casamin acids (the second stress effect), PRR was seen to increase as early as within 15 min of incubation and it is more effective than at the first stress. After a 30-60 min incubation the double stress effect leads to an increase in postreplication gap repair by 23-45%. In this case almost all the gaps prove to be repaired. The second stress alone exerts no influence on PPR efficiency. It is supposed that a preliminary radioadaptation may stimulate synthesis of a protein (proteins) of the SOS-response (presumably DNA polymerase V). The second stress effect apparently induces synthesis of an unknown factor (or depreesses synthesis of a MmrA-like protein), and this in cooperation with a protein newly synthesized during radioadaptation significantly increases the efficiency of PPR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号