首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RGSZ1 and Ret RGS, members of the regulator of G-protein signaling (RGS) family, are GTPase-activating proteins (GAPs) with high selectivity for G alpha(z). We show here that RGSZ1 and Ret RGSZ1 are products of two of several splice variants of one gene, RGS20. RGS20 spans approximately 107 kb and contains at least seven exons. Five exons account for RGSZ1, including a single exon distinct to RGSZ1 that encodes a newly identified amino-terminal region. The previously described open reading frame (ORF) and 3' untranslated region are encoded by four downstream exons that also encode about half of Ret RGS. The 5' end of the RGSZ1 ORF contains several in-frame ATG codons (3-5 depending on the species), and multiple translational start sites may help explain the molecular weight heterogeneity of purified bovine brain RGSZ. Ret RGS replaces the 24 N-terminal amino acid residues of RGSZ1 with a large, N-terminal region that initially distinguished the bovine Ret RGS from human and mouse RGSZ1. This N-terminal domain is encoded by two distinct 5' exons that are variably combined with the four downstream exons shared with RGSZ1 to produce at least six mRNAs. They encode proteins with N termini that vary in size, hydrophobicity, and the presence of a cysteine string. At least two mRNAs that include the exon that encodes the N-terminal region unique to RGSZ1 were found in brain and a few other tissues, but not retina. RGS20 thus can account for multiple G(z)-selective GAPs in different tissues.  相似文献   

3.
4.
5.
6.
7.
The T cell antigen receptor (TCR) is a multisubunit complex which has a dual function of antigen recognition and signal transduction. One of its invariant subunits, the zeta chain, has been shown to have a significant role in the expression and function of the TCR on the cell surface. The mouse and human zeta cDNAs share significant homologies to each other but are distinct from all of the previously characterized TCR components. We now report the isolation and structural analysis of the complete murine zeta gene. This gene spans at least 31 kilobases and divides into eight exons. The first exon, which is located at least 20 kilobases upstream from the second exon, codes for the 5'-untranslated region and most of the signal peptide. The second exon codes for the remainder of the signal peptide, the extracellular domain, the transmembrane domain, and the first three amino acids of the intracytoplasmic domain. Exons 3-7 encode the majority of the intracytoplasmic domain. The eight exon encodes the carboxyl-terminal 21 amino acids and the 3'-untranslated region. Four groups of mRNA initiation sites have been identified at approximately 140 base pairs upstream to the AUG codon. No TATA-like box has been detected. The gene is localized to the distal part of chromosome 1 in a linkage group highly conserved between man and mouse.  相似文献   

8.
9.
Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) is a multifunctional protein containing two enzymes that act sequentially to catalyze the alpha-amidation of neuroendocrine peptides. Peptidylglycine alpha-hydroxylating monooxygenase (PHM) catalyzes the first step of the reaction and is dependent on copper, ascorbate, and molecular oxygen. Peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) catalyzes the second step of the reaction. Previous studies demonstrated that alternative splicing results in the production of bifunctional PAM proteins that are integral membrane or soluble proteins as well as soluble monofunctional PHM proteins. Rat PAM is encoded by a complex single copy gene that consists of 27 exons and encompasses more than 160 kilobases (kb) of genomic DNA. The 12 exons comprising PHM are distributed over at least 76 kb genomic DNA and range in size from 49-185 base pairs; four of the introns within the PHM domain are over 10 kb in length. Alternative splicing in the PHM region can result in a truncated, inactive PHM protein (rPAM-5), or a soluble, monofunctional PHM protein (rPAM-4) instead of a bifunctional protein. The eight exons comprising PAL are distributed over at least 19 kb genomic DNA. The exons encoding PAL range in size from 54-209 base pairs and have not been found to undergo alternative splicing. The PHM and PAL domains are separated by a single alternatively spliced exon surrounded by lengthy introns; inclusion of this exon results in the production of a form of PAM (rPAM-1) in which endoproteolytic cleavage at a paired basic site can separate the two catalytic domains. The exon following the PAL domain encodes the trans-membrane domain of PAM; alternative splicing at this site produces integral membrane or soluble PAM proteins. The COOH-terminal domain of PAM is comprised of a short exon subject to alternative splicing and a long exon encoding the final 68 amino acids present in all bifunctional PAM proteins along with the entire 3'-untranslated region. Analysis of hybrid cell panels indicates that the human PAM gene is situated on the long arm of chromosome 5.  相似文献   

10.
ORP3 is a member of the newly described family of oxysterol-binding protein (OSBP)-related proteins (ORPs). We previously demonstrated that this gene is highly expressed in CD34(+) hematopoietic progenitor cells, and deduced that the "full-length" ORP3 gene comprises 23 exons and encodes a predicted protein of 887 amino acids with a C-terminal OSBP domain and an N-terminal pleckstrin homology domain. To further characterize the gene, we cloned ORP3 cDNA from PCR products and identified multiple splice variants. A total of eight isoforms were demonstrated with alternative splicing of exons 9, 12, and 15. Isoforms with an extension to exon 15 truncate the OSBP domain of the predicted protein sequence. In human tissues there was specific isoform distribution, with most tissues expressing varied levels of isoforms with the complete OSBP domain; while only whole brain, kidney, spleen, thymus, and thyroid expressed high levels of the isoforms associated with the truncated OSBP domain. Interestingly, the expression in cerebellum, heart, and liver of most isoforms was negligible. These data suggest that differential mRNA splicing may have resulted in functionally distinct forms of the ORP3 gene.  相似文献   

11.
12.
13.
14.
The Wnt β-catenin pathway controls numerous cellular processes including cell differentiation and cell-fate decisions. Wnt ligands engage Frizzled receptors and the low-density-lipoprotein-related protein 5/6 (LRP5/6) receptor complex leading to the recruitment of Dishevelled (Dvl) and Axin1 to the plasma membrane. Axin1 has a regulator of G-protein signaling (RGS) domain that binds adenomatous polyposis coli and Gα subunits, thereby providing a mechanism by which Gα subunits can affect β-catenin levels. Here we show that Wnt signaling enhances the expression of another RGS domain-containing protein, PDZ-RGS3. Reducing PDZ-RGS3 levels impaired Wnt3a-induced activation of the canonical pathway. PDZ-RGS3 bound GSK3β and decreased its catalytic activity toward β-catenin. PDZ-RGS3 overexpression enhanced Snail1 and led to morphological and biochemical changes reminiscent of epithelial mesenchymal transition (EMT). These results indicate that PDZ-RGS3 can enhance signals generated by the Wnt canonical pathway and that plays a pivotal role in EMT.  相似文献   

15.
The fructose-1,6-bisphosphate aldolase gene of Drosophila melanogaster contains three divergent copies of an evolutionarily conserved 3' exon. Two mRNAs encoding aldolase contain three exons and differ only in the poly(A) site. The first exon is small and noncoding. The second encodes the first 332 amino acids, which form the catalytic domain, and is homologous to exons 2 through 8 of vertebrates. The third exon encodes the last 29 amino acids, thought to control substrate specificity, and is homologous to vertebrate exon 9. A third mRNA substitutes a different 3' exon (4a) for exon 3 and encodes a protein very similar to aldolase. A fourth mRNA begins at a different promoter and shares the second exon with the aldolase messages. However, two exons, 3a and 4a, together substitute for exon 3. Like exon 4a, exon 3a is homologous to terminal aldolase exons. The exon 3a-4a junction is such that exon 4a would be translated in a frame different from that which would produce a protein with similarity to aldolase. The putative proteins encoded by the third and fourth mRNAs are likely to be aldolases with altered substrate specificities, illustrating alternate use of duplicated and diverged exons as an evolutionary mechanism for adaptation of enzymatic activities.  相似文献   

16.
17.
A notable difficulty in annotating genomic sequence is identifying the correct start codon in a gene. An important such case has been found with KRIT1, the cerebral cavernous malformation type 1 (CCM1) gene. Analysis of human and mouse genomic sequence encompassing the region containing KRIT1/Krit1 using exon/gene-prediction and comparative alignment programs revealed putative exons upstream of the previously described first exon. These additional candidate exons show significant matches to mouse and human ESTs that are contiguous with and extend upstream from the previously designated 5' end of the KRIT1 cDNA sequence. RT-PCR and 5'RACE experiments confirm the presence of four additional upstream coding exons that encode an additional 207 amino acids. Importantly, a novel frameshift mutation in one of these newly identified KRIT1 exons has been found in a CCM1 family. These data establish the authentic KRIT1 amino acid sequence and suggest that the additional KRIT1 exons may harbor mutations in other CCM1 families. In addition, these results provide another example of the utility of rigorous computational and comparative sequence analysis for refining gene structure.  相似文献   

18.
R4/B subfamily RGS (regulator of G protein signaling) proteins play roles in regulation of many GPCR-mediated responses. Multiple RGS proteins are usually expressed in a cell, and it is difficult to point out which RGS protein species are functionally important in the cell. To evaluate intrinsic potency of these RGS proteins, we compared inhibitory effects of RGS1, RGS2, RGS3, RGS4, RGS5, RGS8 and RGS16 on AT1 receptor signaling. Intracellular Ca2+ responses to angiotensin II were markedly attenuated by transiently expressed RGS2, RGS3 and RGS8, compared to weak inhibition by RGS1, RGS4, RGS5 and RGS16. N-terminally deleted RGS2 (RGS2 domain) lost this potent inhibitory effect, whereas RGS domains of RGS3 and RGS8 showed strong inhibition similar to those of the full-length proteins. To investigate key determinants that specify the differences in potency, we constructed chimeric domains by replacing one or two of three exon parts of RGS8 domain with the corresponding part of RGS5. The chimeric RGS8 domains containing the first or the second exon part of RGS5 showed strong inhibitory effects similar to that of wild type RGS8, but the chimeric domain with the third exon part of RGS5 lost its activity. On the contrary, replacement of the third exon part of RGS5 with the corresponding residues of RGS8 increased the inhibitory effect. The role of the third exon part of RGS8 domain was further confirmed with the chimeric RGS8/RGS4 domains. These results indicate the potent inhibitory activity of RGS8 among R4/B subfamily proteins and importance of the third exon.  相似文献   

19.
20.
cDNA clones encoding four rat tropomyosin isoforms, termed TM-2, TM-3, TM-5a, and TM-5b, were isolated and characterized. All are derived from the alpha-tropomyosin gene via alternative RNA processing and the use of two alternate promoters. The cDNA sequences predict that TM-2 and TM-3 both contain 284 amino acids and differ from each other only at an internal region of the protein from amino acids 189 through 213, due to alternative splicing of exons 6a and 6b. TM-5a and TM-5b both contain 248 amino acids and differ from each other only at an internal exon encoding amino acids 153 through 177, also due to alternative splicing of exons 6a and 6b. The differences in the amino acid sequence encoded by these alternate exons affects the theoretical actin-binding pattern of the tropomyosins, such that TM-5b is expected to bind actin with greater affinity than TM-5a. TM-2 and TM-3 are transcribed from the upstream promoter, and TM-5a and TM-5b are transcribed from an internal promoter. In addition, all four isoforms contain the identical COOH-terminal coding region. RNA protection analyses revealed that the mRNA for each isoform is expressed in a number of different tissues and cell types, although the expression of some isoforms is restricted to particular cell types. Furthermore, the expression of mRNA encoding these isoforms was found to be altered in a number of different virally transformed cell lines. The changes in the expression of tropomyosin mRNAs in transformed cells reflect changes in the relative use of the two promoters, as well as the relative use of alternatively spliced exons 6a and 6b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号