首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbone AL  Plested AJ 《Neuron》2012,74(5):845-857
The kinetics of ligand gated ion channels are tuned to permit diverse roles in cellular signaling. To follow high-frequency excitatory synaptic input, postsynaptic AMPA-type glutamate receptors must recover rapidly from desensitization. Chimeras between AMPA and the related kainate receptors demonstrate that the ligand binding domains alone control the lifetime of the desensitized state. Mutation of nonconserved amino acids in the lower lobe (domain 2) of the ligand binding domain conferred slow recovery from desensitization on AMPA receptors, and fast recovery on kainate receptors. Single-channel recordings and a correlation between the rate of deactivation and the rate of recovery across panels of mutant receptors revealed that domain 2 also controls ion channel gating. Our results demonstrate that the same mechanism that ensures fast recovery also sharpens the response of AMPA channels to synaptically released glutamate.  相似文献   

2.
J Dudel  C Franke    H Hatt 《Biophysical journal》1990,57(3):533-545
Completely desensitizing excitatory channels were activated in outside-out patches of crayfish muscle membrane by applying glutamate pulses with switching times of approximately 0.2 ms for concentration changes. Channels were almost completely activated with 10 mM glutamate. Maximum activation was reached within 0.4 ms with greater than or equal to 1 mM glutamate. Channel open probability decayed with a time constant of desensitization of 2 ms with 10 mM glutamate and more rapidly at lower glutamate concentrations. The rate of beginnings of bursts (average number of beginnings of bursts per time bin) decayed even faster but approximately in proportion to the glutamate concentration. The dose-response curve for the channel open probability and for the rate of bursts had a maximum double-logarithmic slope of 5.1 and 4.2, respectively. Channels desensitized completely without opening at very low or slowly rising glutamate concentrations. Desensitization thus originates from a closed channel state. Resensitization was tested by pairs of completely desensitizing glutamate pulses. Sensitivity to the second pulse returned rapidly at pulse intervals between 1 and 2 ms and was almost complete with an interval of 3 ms. Schemes of channel activation by up to five glutamate binding steps, with desensitization by glutamate binding from closed states, are discussed. At high agonist concentrations bursts are predominantly terminated by desensitization. Quantal currents are generated by pulses of greater than 1 mM glutamate, and their decay is determined by the duration of presence of glutamate and possibly by desensitization.  相似文献   

3.
1. L-Glutamate, the most likely transmitter of rapid excitatory synaptic interactions in the brain and spinal cord, is a potent neurotoxin. Mechanisms that terminate the action of glutamate are, therefore, likely to be important for maintaining the integrity of glutaminoceptive neurons. In this study, we show that glutamate currents evoked in voltage-clamped chick motoneurons fade during prolonged or repeated application of glutamate by pressure ejection from nearby pipettes. 2. The magnitude of the decline depends on the Ca2+/Mg2+ ratio in the extracellular medium. With Ca2+ = 10.0 mM and no added Mg, the steady-state glutamate current amounted to 50% of the initial value. 3. Single-channel measurements indicate that the fade is due to receptor desensitization rather than to agonist-induced channel blockade, as the mean channel open time within bursts is independent of the agonist concentration. 4. Application of more selective agonists showed that Ca2+-dependent slow desensitization involved only G1 (NMDA) receptors. G2 responses (activated by kainate and quisqualate) did not exhibit this slow phase of desensitization under the same conditions.  相似文献   

4.
The properties of glutamate-activated excitatory currents on the gm6 muscle from the foregut of the spiny lobsters Panulirus argus and interruptus and the crab Cancer borealis were examined using either noise analysis, analysis of synaptic current decays, or slow iontophoretic currents. The properties of acetylcholine currents activated in nonjunctional regions of the gm6 muscle were also examined. At 12 degrees C and -80 mV, the predominant time constant of power spectra from glutamate-activated current noise was approximately 7 ms and the elementary conductance was approximately 34 pS. At 12 degrees C and -80 mV, the predominant time constant of acetylcholine- activated channels was approximately 11 ms with a conductance of approximately 12 pS. Focally recorded glutamatergic extracellular synaptic currents on the gm6 muscle decayed with time constants of approximately 7-8 ms at 12 degrees C and -80 mV. The decay time constant was prolonged e-fold about every 225-mV hyperpolarization in membrane potential. The Q10 of the time constant of the synaptic current decay was approximately 2.6. The voltage dependence of the steady-state conductance increase activated by iontophoretic application of glutamate has the opposite direction of the steady-state conductance activated by cholinergic agonists when compared on the gm6 muscles. The glutamate-activated conductance increase is diminished with hyperpolarization. The properties of the marine crustacean glutamate channels are discussed in relation to glutamate channels in other organisms and to the acetylcholine channels found on the gm6 muscle and the gm1 muscle of the decapod foregut (Lingle and Auerbach, 1983).  相似文献   

5.
Ion channels, like many other proteins, are composed of multiple structural domains. A stimulus that impinges on one domain, such as binding of a ligand to its recognition site, can influence the activity of another domain, such as a transmembrane channel gate, through interdomain interactions. Kinetic schemes that describe the function of interacting domains typically incorporate a minimal number of states and transitions, and do not explicitly model interactions between domains. Here, we develop a kinetic model of the GABAA receptor, a ligand-gated ion channel modulated by numerous compounds including benzodiazepines, a class of drugs used clinically as sedatives and anxiolytics. Our model explicitly treats both the kinetics of distinct functional domains within the receptor and the interactions between these domains. The model describes not only how benzodiazepines that potentiate GABAA receptor activity, such as diazepam, affect peak current dose–response relationships in the presence of desensitization, but also their effect on the detailed kinetics of current activation, desensitization, and deactivation in response to various stimulation protocols. Finally, our model explains positive modulation by benzodiazepines of receptor currents elicited by either full or partial agonists, and can resolve conflicting observations arguing for benzodiazepine modulation of agonist binding versus channel gating.  相似文献   

6.
Agonist-binding kinetics to the nicotinic acetylcholine receptor (AChR) from Torpedo californica were measured using sequential-mixing stopped-flow fluorescence methods to determine the contribution of each individual site to agonist-induced opening and desensitization. Timed dansyl-C6-choline (DC6C) binding followed by its dissociation upon mixing with high, competing agonist concentrations revealed four kinetic components: an initial, fast fluorescence decay, followed by a transient increase, and then two characteristic decays that reflect dissociation from the desensitized agonist sites. The transient increase resulted from DC6C binding to the open-channel based on its prevention by proadifen, a noncompetitive antagonist. Further characterization of DC6C channel binding by the inhibition of [3H]phencyclidine binding and by equilibrium measurements of DC6C fluorescence yielded KD values of 2-4 microM for the desensitized AChR and approximately 600 microM for the closed state. At this site, DC6C displayed a strongly blue-shifted emission spectrum, higher intrinsic fluorescence, and weaker energy transfer from tryptophans than when bound to either agonist site. The initial, fast fluorescence decay was assigned to DC6C dissociation from the alphadelta site of the AChR in its closed conformation, on the basis of inhibition with the site-selective antagonists d-tubocurarine and alpha-conotoxin MI. Fast decay amplitude data indicated an apparent affinity of 0.9 microM for the closed-state alphadelta site; the closed-state alphagamma-site affinity is inferred to be near 100 microM. These values and the known affinities for the desensitized conformation show that the alphagamma site drives AChR desensitization to a approximately 40-fold greater extent than the alphadelta site, undergoes energetically larger conformational changes, and is the primary determinant of agonist potency.  相似文献   

7.
Binding of an agonist to the 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)-propionic acid (AMPA) receptor family of the glutamate receptors (GluRs) results in rapid activation of an ion channel. Continuous application results in a non-desensitizing response for agonists like kainate, whereas most other agonists, such as the endogenous agonist (S)-glutamate, induce desensitization. We demonstrate that a highly conserved tyrosine, forming a wedge between the agonist and the N-terminal part of the bi-lobed ligand-binding site, plays a key role in the receptor kinetics as well as agonist potency and selectivity. The AMPA receptor GluR2, with mutations in Tyr-450, were expressed in Xenopus laevis oocytes and characterized in a two-electrode voltage clamp setup. The mutation GluR2(Y450A) renders the receptor highly kainate selective, and rapid application of kainate to outside-out patches induced strongly desensitizing currents. When Tyr-450 was substituted with the larger tryptophan, the (S)-glutamate desensitization is attenuated with a 10-fold increase in steady-state/peak currents (19% compared with 1.9% at the wild type). Furthermore, the tryptophan mutant was introduced into the GluR2-S1S2J ligand binding core construct and co-crystallized with kainate, and the 2.1-A x-ray structure revealed a slightly more closed ligand binding core as compared with the wild-type complex. Through genetic manipulations combined with structural and electrophysiological analysis, we report that mutations in position 450 invert the potency of two central agonists while concurrently strongly shaping the agonist efficacy and the desensitization kinetics of the AMPA receptor GluR2.  相似文献   

8.
Maltsev AS  Ahmed AH  Fenwick MK  Jane DE  Oswald RE 《Biochemistry》2008,47(40):10600-10610
The mechanism by which the binding of a neurotransmitter to a receptor leads to channel opening is a central issue in molecular neurobiology. The structure of the agonist binding domain of ionotropic glutamate receptors has led to an improved understanding of the changes in structure that accompany agonist binding and have provided important clues about the link between these structural changes and channel activation and desensitization. However, because the binding domain has exhibited different structures under different crystallization conditions, understanding the structure in the absence of crystal packing is of considerable importance. The orientation of the two lobes of the binding domain in the presence of a full agonist, an antagonist, and several partial agonists was measured using NMR spectroscopy by employing residual dipolar couplings. For some partial agonists, the solution conformation differs from that observed in the crystal. A model of channel activation based on the results is discussed.  相似文献   

9.
The canonical conformational states occupied by most ligand-gated ion channels, and many cell-surface receptors, are the resting, activated, and desensitized states. While the resting and activated states of multiple receptors are well characterized, elaboration of the structural properties of the desensitized state, a state that is by definition inactive, has proven difficult. Here we use electrical, chemical, and crystallographic experiments on the AMPA-sensitive GluR2 receptor, defining the conformational rearrangements of the agonist binding cores that occur upon desensitization of this ligand-gated ion channel. These studies demonstrate that desensitization involves the rupture of an extensive interface between domain 1 of 2-fold related glutamate-binding core subunits, compensating for the ca. 21 degrees of domain closure induced by glutamate binding. The rupture of the domain 1 interface allows the ion channel to close and thereby provides a simple explanation to the long-standing question of how agonist binding is decoupled from ion channel gating upon receptor desensitization.  相似文献   

10.
Agonist binding to glutamate receptor ion channels occurs within an extracellular domain (S1S2) that retains ligand affinity when expressed separately. S1S2 is homologous to periplasmic binding proteins, and it has been proposed that a Venus flytrap-style cleft closure triggers opening of glutamate receptor ion channels. Here we compare the kinetics of S1S2-agonist binding to those of the periplasmic binding proteins and show that the reaction involves an initial rapid association, followed by slower conformational changes that stabilize the complex: "docking" followed by "locking." The motion detected here reflects the mechanism by which the energy of glutamate binding is converted into protein conformational changes within S1S2 alone. In the intact channel, these load-free conformational changes are harnessed and possibly modified as the agonist binding reaction is used to drive channel opening and subsequent desensitization. Using mutagenesis, key residues in each step were identified, and their roles were interpreted in light of a published S1S2 crystal structure. In contrast to the Venus flytrap proposal, which focuses on motion between the two lobes as the readout for agonist binding, we argue that smaller, localized conformational rearrangements allow agonists to bridge the cleft, consistent with published hydrodynamic measurements.  相似文献   

11.
Two distinct forms of desensitization have been characterized for N-methyl-D-aspartate (NMDA) receptors. One form results from a weakening of agonist affinity when channels are activated whereas the other form of desensitization results when channels enter a long-lived nonconducting state. A weakening of glycine affinity upon NMDA receptor activation has been reported. Cyclic reaction schemes for NMDA receptor activation require that a concomitant affinity shift should be observed for glutamate agonists. In this study, measurements of peak and steady-state NMDA receptor currents yielded EC50 values for glutamate that differed by 1.9-fold, but no differences were found for another agonist, L-cysteine-S-sulfate (LCSS). Simulations show that shifts in EC50 values may be masked by significant degrees of desensitization resulting from channels entering a long-lived nonconducting state. Simulations also show that a decrease in the degree of desensitization with increasing agonist concentration is a good indicator for the existence of desensitization resulting from a weakening of agonist affinity. Both glutamate and LCSS exhibited this trend. An affinity difference of three- to eightfold between high-and low-affinity agonist-binding states was estimated from fitting of dose-response data with models containing both types of desensitization. This indicates that activation of NMDA receptors causes a reduction in both glutamate and glycine affinities.  相似文献   

12.
Ionotropic glutamate receptor (iGluR) channels control synaptic activity. The crystallographic structure of GluA2, the prototypical iGluR, reveals a clamshell-like ligand-binding domain (LBD) that closes in the presence of glutamate to open a gate on the pore lining α-helix. How LBD closure leads to gate opening remains unclear. Here, we show that bending the pore helix at a highly conserved alanine residue (Ala-621) below the gate is responsible for channel opening. Substituting Ala-621 with the smaller more flexible glycine resulted in a basally active, nondesensitizing channel with ∼39-fold increase in glutamate potency without affecting surface expression or binding. On GluA2(A621G), the partial agonist kainate showed efficacy similar to a full agonist, and competitive antagonists CNQX and DNQX acted as a partial agonists. Met-629 in GluA2 sits above the gate and is critical in transmitting LBD closure to the gate. Substituting Met-629 with the flexible glycine resulted in reduced channel activity and glutamate potency. The pore regions in potassium channels are structurally similar to iGluRs. Whereas potassium channels typically use glycines as a hinge for gating, iGluRs use the less flexible alanine as a hinge at a similar position to maintain low basal activity allowing for ligand-mediated gating.  相似文献   

13.
The kinetics of voltage-clamped sodium currents were studied in frog skeletal muscle. Sodium currents in frog skeletal muscle activate and inactivate following an initial delay in response to a depolarizing voltage pulse. Inactivation occurs via a double exponential decay exhibiting fast and slow components for virtually all depolarizing pulses used.The deactivation of Na currents exhibits two exponential components, one decaying rapidly, while the other decays slowly in time; the relative amplitude of the two components changes with the duration of the activating pulse. The two deactivation phases remain after pharmacological elimination of inactivation.In individual fibers, the percent amplitude of the slow inactivation component correlates with the percent amplitude of the slow deactivation component.Tetrodotoxin differentially blocks the slow deactivation component.These observations are interpreted as the activation, inactivation and deactivation of two subtypes (fast and slow) of Na channels.Studies of the slow deactivation phase magnitude vs the duration of the eliciting pulse provide a way to determine the kinetics of the slow Na channel in muscle.Ammonium substitution for Na in the Ringer produces a voltage dependent activation and inactivation of current which exhibits only one decay phase, and eliminates the slow decay phase of current, suggesting that adjustments of the ionic environment of the channels can mask the presence of one of the channel subtypes.  相似文献   

14.
Slow components of potassium tail currents in rat skeletal muscle   总被引:2,自引:2,他引:0       下载免费PDF全文
The kinetics of potassium tail currents have been studied in the omohyoid muscle of the rat using the three-microelectrode voltage-clamp technique. The currents were elicited by a two-pulse protocol in which a conditioning pulse to open channels was followed by a test step to varying levels. The tail currents reversed at a single well-defined potential (VK). At hyperpolarized test potentials (-100 mV and below), tail currents were inward and exhibited two clearly distinguishable phases of decay, a fast tail with a time constant of 2-3 ms and a slow tail with a time constant of approximately 150 ms. At depolarized potentials (-60 mV and above), tail currents were outward and did not show two such easily separable phases of decay, although a slow kinetic component was present. The slow kinetic phase of outward tail currents appeared to be functionally distinct from the slow inward tail since the channels responsible for the latter did not allow significant outward current. Substitution of Rb for extracellular K abolished current through the anomalous (inward-going) rectifier and at the same time eliminated the slow inward tail, which suggests that the slow inward tail current flows through anomalous rectifier channels. The amplitude of the slow inward tail was increased and VK was shifted in the depolarizing direction by longer conditioning pulses. The shift in VK implies that during outward currents potassium accumulates in a restricted extracellular space, and it is suggested that this excess K causes the slow inward tail by increasing the inward current through the anomalous rectifier. By this hypothesis, the tail current slowly decays as K diffuses from the restricted space. Consistent with such a hypothesis, the decay of the slow inward tail was not strongly affected by changing temperature. It is concluded that a single delayed K channel is present in the omohyoid. Substitution of Rb for K has little effect on the magnitude or time course of outward current tails, but reduces the magnitude and slows the decay of the fast component of inward tails. Both effects are consistent with a mechanism proposed for squid giant axon (Swenson and Armstrong, 1981): that (a) the delayed potassium channel cannot close while Rb is inside it, and (b) that Rb remains in the channel longer than K.  相似文献   

15.
In vivo, agonist binding to the open conformation of the ligand binding domain initiates the process of gating in ionotropic glutamate receptors. Arguably, an alternative manner to gate the receptors exists, which requires a point mutation in the most-conserved sequence motif in the second transmembrane domain. Originally, this mutation occurred spontaneously in the orphan glutamate receptor subunit delta2, causing the ataxic phenotype of lurcher mice.1 In the absence of a ligand that could initiate gating at this orphan subunit, the introduction of the lurcher mutation led to spontaneous currents through delta2-lurcher channels.1 Introduction of the corresponding mutation into the AMPA receptor GluR1 induced a number of aberrant gating properties.2-5 Among those, glutamate potency was highly increased, and competitive antagonists suddenly behaved as partial agonists.2,5 We reported that the introduction of delta2 amino acids in the domain preceding the first transmembrane domain in GluR1 resulted in a mutant receptor that displayed all characteristics of lurcher-typical gating. We proposed that lurcher-like mutations work to enhance gating by destabilizing the closed state of the receptor. As a result, no or minimal conformational changes in the ligand binding domain are sufficient for gating, explaining, respectively, why spontaneous currents and competitive antagonists act as partial agonists in lurcher-like channels. Strikingly, a similar conversion of antagonists upon coexpression of TARPs with glutamate receptors has recently been reported.6,7 We take this as indication that the actual mechanism of action might be very similar, and that both lurcher-like mutations and TARPs work as 'gating enhancers'.  相似文献   

16.
Our laboratory has worked extensively on glutamatergic and GABA-ergic channels, predominantly in crayfish, but also in locust,Drosophila and recentlyAscaris. Channel currents were recorded in the different modes of the patch-clamp technique (Hamillet al., 1981). The opening kinetics of the channels were derived from open and closed time histograms obtained from single channel recordings. From these, channel conductances could also be evaluated. The most relevant data were obtained by very rapidly rising and falling pulses (time of change about 0.1 ms) of agonists applied to outside-out patches containing the respective channels (Frankeet al., 1987). From such recordings we constructed dose-response curves for peak and steady-state currents, for the rise times of the currents and for the time constants of desensitization. In double-pulse experiments we measured recovery from desensitization and predesensitization due to low agonist concentrations. For most of the channel types, we succeeded in constructing a reaction scheme which in computer simulations mimicked channel behaviour to a good approximation.  相似文献   

17.
The properties of acetylcholine-activated excitatory currents on the gm1 muscle of three marine decapod crustaceans, the spiny lobsters Panulirus argus and interruptus, and the crab Cancer borealis, were examined using either noise analysis, analysis of synaptic current decays, or analysis of the voltage dependence of ionophoretically activated cholinergic conductance increases. The apparent mean channel open time (tau n) obtained from noise analysis at -80 mV and 12 degrees C was approximately 13 ms; tau n was prolonged e-fold for about every 100-mV hyperpolarization in membrane potential; tau n was prolonged e- fold for every 10 degrees C decrease in temperature. Gamma, the single- channel conductance, at 12 degrees C was approximately 18 pS and was not affected by voltage; gamma was increased approximately 2.5-fold for every 10 degrees C increase in temperature. Synaptic currents decayed with a single exponential time course, and at -80 mV and 12 degrees C, the time constant of decay of synaptic currents, tau ejc, was approximately 14-15 ms and was prolonged e-fold about every 140-mV hyperpolarization; tau ejc was prolonged about e-fold for every 10 degrees C decrease in temperature. The voltage dependence of the amplitude of steady-state cholinergic currents suggests that the total conductance increase produced by cholinergic agonists is increased with hyperpolarization. Compared with glutamate channels found on similar decapod muscles (see the following article), the acetylcholine channels stay open longer, conduct ions more slowly, and are more sensitive to changes in the membrane potential.  相似文献   

18.
The peptide omega-agatoxin-IIIA (omega-Aga-IIIA) blocks ionic current through L-type Ca channels in guinea pig atrial cells without affecting the associated gating currents. omega-Aga-IIIA permits the study of L- type Ca channel ionic and gating currents under nearly identical ionic conditions. Under conditions that isolate L-type Ca channel currents, omega-Aga-IIIA blocks all ionic current during a test pulse and after repolarization. This block reveals intramembrane charge movements of equal magnitude and opposite sign at the beginning of the pulse (Q(on)) and after repolarization (Q(off)). Q(on) and Q(off) are suppressed by 1 microM felodipine, saturate with increasing test potential, and are insensitive to Cd. The decay of the transient current associated with Q(on) is composed of fast and slow exponential components. The slow component has a time constant similar to that for activation of L-type Ca channel ionic current, over a broad voltage range. The current associated with Q(off) decays monoexponentially and more slowly than ionic current. Similar charge movements are found in guinea pig tracheal myocytes, which lack Na channels and T-type Ca channels. The kinetic and pharmacological properties of Q(on) and Q(off) indicate that they reflect gating currents associated with L-type Ca channels. omega-Aga-IIIA has no effect on gating currents when ionic current is eliminated by stepping to the reversal potential for Ca or by Cd block. Gating currents constitute a significant component of total current when physiological concentrations of Ca are present and they obscure the activation and deactivation of L-type Ca channels. By using omega- Aga-IIIA, we resolve the entire time course of L-type Ca channel ionic and gating currents. We also show that L- and T-type Ca channel ionic currents can be accurately quantified by tail current analysis once gating currents are taken into account.  相似文献   

19.
We have examined the mechanisms underlying the voltage sensitivity of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors in voltage-clamped outside-out patches and whole cells taken from the nucleus magnocellularis of the chick. Responses to either glutamate or kainate had outwardly rectifying current-voltage relations. The rate and extent of desensitization during prolonged exposure to agonist, and the rate of deactivation after brief exposure to agonist, decreased at positive potentials, suggesting that a kinetic transition was sensitive to membrane potential. Voltage dependence of the peak conductance and of the deactivation kinetics persisted when desensitization was reduced with aniracetam or blocked with cyclothiazide. Furthermore, the rate of recovery from desensitization to glutamate was not voltage dependent. Upon reduction of extracellular divalent cation concentration, kainate-evoked currents increased but preserved rectifying current-voltage relations. Rectification was strongest at lower kainate concentrations. Surprisingly, nonstationary variance analysis of desensitizing responses to glutamate or of the current deactivation after kainate removal revealed an increase in the mean single-channel conductance with more positive membrane potentials. These data indicate that the rectification of the peak response to a high agonist concentration reflects an increase in channel conductance, whereas rectification of steady-state current is dominated by voltage-sensitive channel kinetics.  相似文献   

20.
Using the outside-out patch clamp recording technique together with a rapid solution exchange system, we measured ionic currents through nicotinic acetylcholine (ACh) receptor channels from BC3H-1 cells in response to rapid applications of 0.3-1,000 microM ACh. We used nonstationary fluctuation analysis of ensembles of responses to deduce the number of channels in the patch, the maximum open channel probability as a function of ACh concentration and the time course of a fast desensitization process. We found that: (a) Excised patches from BC3H-1 cells typically contain between 50 and 150 functional ACh receptor ion channels. (b) The open channel probability is proportional to [ACh]1.95 at low concentrations of ACh, is half-maximal at 20 microM ACh and saturates above 100 microM ACh. (c) ACh is a very efficacious agonist; 100 microM ACh opens at least 90% of the available channels. This estimate of efficacy is model-independent. (d) The rate of decay of the agonist-induced current is concentration-dependent. In the presence of 100 microM ACh the current decays with a time constant of 50-100 ms. It decays more slowly in the presence of lower concentrations of agonist but is relatively insensitive to voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号