首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkyl epoxides are important intermediates in the chemical industry. They are also formed in vivo during the detoxification of alkenes. Alkyl epoxides have shown genotoxicity in many toxicology assays which has been associated with their covalent binding to DNA. Here aspects of the formation and properties of DNA adducts, induced by some industrially important alkenes and mono-substituted epoxides are discussed. These include propylene oxide, epichlorohydrin, allyl glycidyl ether and the epoxy metabolites of styrene and butadiene. The major DNA adducts formed by epoxides are 7-substituted guanines, 1- and 3-substituted adenines and 3-substituted cytosines. In addition, styrene oxide and butadiene monoepoxide are able to modify exocyclic sites in the DNA bases, the sites being in the case of styrene oxide N(2)- and O(6)-positions of guanine, N(6)-adenine as well as N(4)-and O(2)-cytosine. In vivo the main adduct is the 7-substituted guanines. The 1-substituted adenines have also shown marked levels, and these adducts should also be targets in biomonitoring of human exposures. Due to its low mutagenicity, 7-substituted guanines are considered as a surrogate marker for other mutagenic lesions, e.g. those of 1-adenine or 3-uracil adducts.  相似文献   

2.
The reaction between 2'-deoxycytidine and styrene 7,8-oxide (SO) resulted in alkylation at the 3-position and at the O(2)-position through the alpha- and beta-carbons of the epoxide but at the N(4)-position only through the alpha-carbon. The 3-alkylated adducts were found to deaminate to the corresponding 2'-deoxyuridine adducts (37 degrees C, pH 7.4) with half-lives of 6 min and 2.4 h for the alpha- and beta-isomers, respectively. The N(4)-alkylated products were stable at neutral pH. The O(2)-alkylated products were unstable being prone to depyrimidation and to isomerisation between alpha- and beta-isomers. In SO-treated double-stranded DNA, enzymatic hydrolysis allowed the identification of the beta3-deoxyuridine and alphaN(4)-deoxycytidine adducts (1.9 and 0.5% of total alkylation, respectively), in addition to the previously identified DNA-adducts. The 3-substituted uracil may have implications for the mutagenicity of SO.  相似文献   

3.
Styrene 7,8-oxide (SO), a major metabolite of styrene, is classified as a probable human carcinogen. In the present work, salmon testis DNA was reacted with SO and the alkylation products were analysed after sequential depurination in neutral or acidic conditions followed by HPLC separation and UV-detection. A novel finding was that the N-3 position of adenine was the next most reactive alkylation site in double-stranded DNA, comprising 4% of the total alkylation, as compared to alkylation at the N-7 position of guanine, 93% of the total alkylation. Both alpha- and beta-products of SO were formed at these two sites. Other modified sites were N2-guanine (1.5%, alpha-isomer), 1-adenine (0.4%, both isomers) and N6-adenine (0.7%, both isomers) as well as 1-hypoxanthine (0.1%, alpha-isomer), formed by deamination of the corresponding 1-adenine adduct. The results indicated that in double-stranded DNA N-7 of guanine and N-3 of adenine account for 97% of alkylation by SO. However, these abundant adducts are not stable, the half-life of depurination in DNA for 3-substituted adenines being approximately 10 and approximately 20 h, for alpha- and beta-isomers, respectively, and 51 h for both isomers of 7-substituted guanines.  相似文献   

4.
The mutagenic and carcinogenic chemical aflatoxin B1 (AFB1) reacts almost exclusively at the N(7)-position of guanine following activation to its reactive form, the 8,9-epoxide (AFB1 oxide). In general N(7)-guanine adducts yield DNA strand breaks when heated in base, a property that serves as the basis for the Maxam-Gilbert DNA sequencing reaction specific for guanine. Using DNA sequencing methods, other workers have shown that AFB1 oxide gives strand breaks at positions of guanines; however, the guanine bands varied in intensity. This phenomenon has been used to infer that AFB1 oxide prefers to react with guanines in some sequence contexts more than in others and has been referred to as "sequence specificity of binding". Herein, data on the reaction of AFB1 oxide with several synthetic DNA polymers with different sequences are presented, and (following hydrolysis) adduct levels are determined by high-pressure liquid chromatography. These results reveal that for AFB1 oxide (1) the N(7)-guanine adduct is the major adduct found in all of the DNA polymers, (2) adduct levels vary in different sequences, and, thus, sequence specificity is also observed by this more direct method, and (3) the intensity of bands in DNA sequencing gels is likely to reflect adduct levels formed at the N(7)-position of guanine. Knowing this, a reinvestigation of the reactivity of guanines in different DNA sequences using DNA sequencing methods was undertaken. The reactivities of 190 guanines were determined quantitatively and considered in a pentanucleotide context, 5'-WXGYZ-3', where the central, underlined G represents the reactive guanine and W, X, Y, and Z can be any of the nucleotide bases. Methods are developed to determine that the X (5'-side) base and the Y (3'-side) base are most influential in determining guanine reactivity. The influence of the bases in the 5'-position (X) is 5'-G (1.0) greater than C (0.8) greater than A (0.3) greater than T (0.2), while the influence of the bases in the 3'-position (Y) is 3'-G (1.0) greater than T (0.8) greater than C (0.4) greater than A (0.3). These rules in conjunction with molecular modeling studies (to be published elsewhere) were used to assess the binding sites that might be utilized by AFB1 oxide in its reaction with DNA.  相似文献   

5.
All CG dinucleotides along exons 5-8 of the p53 tumor suppressor gene contain endogenous 5-methylcytosine (MeC). These same sites (e.g., codons 157, 158, 245, 248, and 273) are mutational hot spots in smoking-induced lung cancer. Several groups used the UvrABC endonuclease incision assay to demonstrate that methylated CG dinucleotides of the p53 gene are the preferred binding sites for the diol epoxides of bay region polycyclic aromatic hydrocarbons (PAH). In contrast, effects of endogenous cytosine methylation on the distribution of DNA lesions induced by tobacco-specific nitrosamines, e.g., 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), have not been elucidated. In the work presented here, a stable isotope labeling HPLC-ESI-MS/MS approach was employed to analyze the reactivity of the N7 and O6 positions of guanines within hemimethylated and fully methylated CG dinucleotides toward NNK-derived methylating and pyridyloxobutylating species. 15N3-labeled guanine bases were placed within synthetic DNA sequences representing endogenously methylated p53 codons 154, 157, and 248, followed by treatment with acetylated precursors to NNK diazohydroxides. HPLC-ESI-MS/MS analysis was used to determine the relative yields of N7- and O6-guanine adducts at the 15N3-labeled position. In all cases, the presence of MeC inhibited the formation of N7-methylguanine, O6-methylguanine, and O6-pyridyloxobutylguanine at a neighboring G, with the greatest decrease observed in fully methylated dinucleotides and at guanines preceded by MeC. Furthermore, the O6-Me-dG/N7-Me-G molar ratios were decreased in the presence of the 5'-neighboring MeC, suggesting that the observed decline in O6-alkylguanine adduct yields is, at least partially, a result of an altered reactivity pattern in methylated CG dinucleotides. These results indicate that, unlike N2-guanine adducts of PAH diol epoxides, NNK-induced N7- and O6-alkylguanine adducts are not preferentially formed at the endogenously methylated CG sites within the p53 tumor suppressor gene.  相似文献   

6.
Yeast DNA polymerase eta can replicate through cis-syn cyclobutane pyrimidine dimers and 8-oxoguanine lesions with the same efficiency and accuracy as replication of an undamaged template. Previously, it has been shown that Escherichia coli DNA polymerases I, II, and III are incapable of bypassing DNA substrates containing N(2)-guanine adducts of stereoisomeric 1,3-butadiene metabolites. Here we showed that yeast polymerase eta replicates DNA containing the monoadducts (S)-butadiene monoepoxide and (S,S)-butadiene diolepoxide N(2)-guanines albeit at an approximately 200-300-fold lower efficiency relative to the control guanine. Interestingly, nucleotide incorporation opposite the (R)-butadiene monoepoxide and the (R,R)-butadiene diolepoxide N(2)-guanines was approximately 10-fold less efficient than incorporation opposite their S stereoisomers. Polymerase eta preferentially incorporates the correct nucleotide opposite and downstream of all four adducts, except that it shows high misincorporation frequencies for elongation of C paired with (R)-butadiene monoepoxide N(2)-guanine. Additionally, polymerase eta does not bypass the (R,R)- and (S,S)-butadiene diolepoxide N(2)-guanine-N(2)-guanine intra- strand cross-links, and replication is completely blocked just prior to the lesion. Collectively, these data suggest that polymerase eta can tolerate the geometric distortions in DNA conferred by the N(2)-guanine butadiene monoadducts but not the intrastrand cross-links.  相似文献   

7.
Styrene-7,8-oxide was reacted with guanosine and deoxyguanosine and four isomeric 7-alkylguanosines were isolated, two of each being substitutions through the alpha and beta carbon of styrene oxide. The diastereomeric adducts imidazole ring-opened at an identical rate but the alpha- and beta-adducts differed (half-lives 90 and 56 min, respectively, pH 10, 24 degrees C). The 7-beta alkyl-deoxyguanosine derivatives ring-opened at a six times slower rate, which was similar to 7-methyldeoxyguanosine. The diastereomeric guanosine products also depurinated at the same rate but the beta-derivatives depurinated faster than the alpha-derivatives (t1/2 35 vs. 79 min, respectively, pH 1, 70 degrees C). The differences in the ring-opening and depurination of the alpha- and beta-isomers corresponded to their respective pK alpha values (7.31-7.32 vs. 7.16-7.19). The 7-alkyldeoxyguanosine derivatives of styrene oxide depurinated equally fast as 7-methyldeoxyguanosine. By contrast, the depurination of 7-alkylguanine was 15 times slower in the single-stranded DNA and 55 times slower in the double-stranded DNA.  相似文献   

8.
Genotoxic and clastogenic effects of styrene were studied in mice. Male NMRI mice were exposed by inhalation to styrene in concentrations of 750 and 1500 mg/m3 for 21, 7, 3 and 1 days (6 h/day, 7 days/week). Followed parameters included styrene in blood, specific styrene oxide (SO) induced DNA adducts, DNA strand breaks and micronuclei. The formation of SO induced 7-SO-guanines and 1-SO-adenines in DNA was analysed from lung tissues by two versions of the 32P-postlabeling technique. In lungs after 21 days of exposure to 1500 mg/m3 the level of 7-SO-guanine was 23.0+/-11.9 adducts/10(8) normal nucleotides, while 1-SO-adenine was detected at the levels of 0.6+/-0.2 adducts/10(8) normal nucleotides. Both 7-SO-guanines and 1-SO-adenines strongly correlated with exposure parameters, particularly with styrene concentration in blood (r=0.875, P=0.0002 and r=0.793, P=0.002, respectively). DNA breaks were measured in peripheral lymphocytes, bone marrow cells and liver cells using comet assay. To discern oxidative damage and abasic sites, endonuclease III was used. In bone marrow of exposed mice slight increase of strand breaks can be detected after 7 days of inhalation. A significant increase was revealed in the endonuclease III-sensitive sites after 21 days of inhalation in bone marrow. In the liver cells inhalation exposure to both concentrations of styrene did not virtually affect either levels of DNA single-strand breaks or endonuclease III-sensitive sites. The inhalation of 1500 mg/m3 of styrene induced significant increase of micronuclei after 7 days of exposure (10.4+/-2.5/1000 cells, i.e. twice higher micronuclei frequency than in controls). After 21 days of inhalation no significant difference between the control group and the two exposed groups was observed. Whether the decrease of micronuclei after 21 days of inhalation was due to the inhibition of cell proliferation caused by styrene or due to the natural elimination of chromatide fragments, remains to be clarified. An interesting link has been found between DNA single-strand breaks in bone marrow and frequencies of micronuclei (r=0.721, P=0.028).  相似文献   

9.
Otteneder M  Lutz U  Lutz WK 《Mutation research》2002,500(1-2):111-116
Styrene by inhalation had been shown to increase the lung tumor incidence in mice at 20 ppm and higher, but was not carcinogenic in rats at up to 1000 ppm. Styrene-7,8-oxide, the major metabolic intermediate, has weak electrophilic reactivity. Therefore, DNA adduct formation was expected at a low level and a 32P-postlabeling method for a determination of the two regioisomeric 2'-deoxyguanosyl-O6-adducts at the alpha(7)- and beta(8)-positions had been established. The first question was whether DNA adducts could be measured in the rat at the end of the 2 years exposure of a bioassay for carcinogenicity, even though tumor incidence was not increased. Liver samples of male and female CD rats were available for DNA adduct analysis. Adducts were above the limit of detection only in the highest dose group (1000 ppm), with median levels of 9 and 8 adducts per 10(7) nucleotides in males and females, respectively (sum of alpha- and beta-adducts). The result indicates that the rat liver tolerated a relatively high steady-state level of styrene-induced DNA adducts without detectable increase in tumor formation. The second question was whether different DNA adduct levels in the lung of rats and mice could account for the species difference in tumor incidence. Groups of female CD-1 mice were exposed for 2 weeks to 0, 40, and 160 ppm styrene (6h per day; 5 days per week), female CD rats were exposed to 0 and 500 ppm. In none of the lung DNA samples were adducts above a limit of detection of 1 adduct per 10(7) DNA nucleotides. The data indicate that species- and organ-specific tumor induction by styrene is not reflected by DNA adduct levels determined in tissue homogenate. The particular susceptibility of the mouse lung might have to be based on other reactive metabolites and DNA adducts, indirect DNA damage and/or cell-type specific toxicity and tumor promotion.  相似文献   

10.
Anti benzo[a]pyrene diol epoxide (BPDE) alkylates guanines of DNA at N7 in the major groove and at the exocyclic amino group in the minor groove. In this report we investigated the rates of BPDE hydrolysis, DNA alkylation and subsequent depurination of BPDE-adducted pBR322 DNA fragment using polyacrylamide gel electrophoresis. Preincubation studies showed that it hydrolyzed completely in triethanolamine buffer in <2 min. The depurination kinetics showed that a fraction of the N7 alkylated guanine depurinated rapidly; however a significant amount of N7 guanine alkylation remained stable to spontaneous depurination over a 4-h period. Similar results were obtained for the hydrolysis and alkylation rates of syn isomer but it required nearly 500 times more concentration to induce similar levels of N7 guanine alkylation. Cadmium ion strongly inhibited the N7 guanine alkylation of both isomers. But the minor groove alkylation was not affected as demonstrated by postlabeling assay which confirmed the presence of heat-and cadmium-stable minor groove adducts in BPDE-treated calf thymus DNA. Based on these and our earlier findings, we propose a mechanism for the synergistic effect of cadmium in chemically induced carcinogenesis.  相似文献   

11.
R L Rill  G A Marsch 《Biochemistry》1990,29(25):6050-6058
The sequence preferences of formation of piperidine-labile adducts of guanine by individual (+)- and (-)-isomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene [anti-(+)- and anti-(-)-BPDE] were examined by techniques analogous to chemical DNA sequencing. Data were obtained on over 1200 bases with anti-(-)-BPDE and 1000 bases with anti-(+)-BPDE. Guanines on average yielded more labile adducts than other bases, and the reactivities of guanines with both anti-(+)- and anti-(-)-BPDE isomers were found to be distinctly nonrandom with respect to DNA sequence. The most and least reactive guanines, defined in terms of the upper and lower 10 percentiles of reactivity, differed on average by a factor of 17. This range of guanine reactivities was correlated with distinct sequence preferences, which differed in part for the two isomers. The strongest determinant for preferred reaction of anti-(-)-BPDE to form a labile adduct at a guanine was the presence of a 3'-flanking guanine, but a thymine 5'-flanking a guanine also generally enhanced reactivity. The triplets containing central guanines most preferred by anti-(-)-BPDE were AGG, CGG, and TG(G greater than T greater than C,A). anti-(+)-BPDE also formed labile adducts preferentially at AGG and CGG triplets, but not at TGN triplets. Significant effects of next-nearest-neighbor bases on guanine reactivities were also noted.  相似文献   

12.
4‐[Bis(2‐chloroethyl)amino]benzenebutanoic acid (=chlorambucil, 1 ; 2.5 mM ) was allowed to react with single‐ and double‐stranded calf thymus DNA at physiological pH (cacodylic acid, 50% base) at 37°. The DNA–chlorambucil adducts were identified by analyzing the DNA hydrolysates by NMR, UV, HPLC, LC/ESI‐MS/MS techniques as well as by spiking with authentic materials. ssDNA was more reactive than dsDNA, and the order of reactivity in ssDNA was Ade‐N1>Gua‐N7>Cyt‐N3>Ade‐N3. The most reactive site in dsDNA was Ade‐N3. The Gua‐N7 and Ade‐N3 adducts were hydrolytically labile. Ade‐N7 adduct could not be identified in the hydrolysates of ssDNA or dsDNA. The adduct Gua‐N7,N7, which consists of two units of Gua bound together with a unit derived from chlorambucil, is a cross‐linking adduct, and it was detected in the hydrolysates of ssDNA and dsDNA. Also several other adducts were detected which could be characterized by spiking with previously isolated authentic adducts or tentatively by MS. The role of chlorambucil–DNA adducts on the cytotoxicity and mutagenity of 1 is also discussed.  相似文献   

13.
Clerocidin, a diterpenoid with antibacterial and antitumor activity, stimulates in vitro DNA cleavage mediated by mammalian and bacterial topoisomerase (topo) II. Different from the classical topoisomerase poisons, clerocidin-stimulated breaks at guanines immediately preceding the sites of DNA cleavage are not resealed upon heat or salt treatment. To understand the mechanism of irreversible trapping of the topo II-cleavable complex, we have investigated the reactivity of clerocidin per se towards DNA. We show here that the drug is able to nick negatively supercoiled plasmids. DNA cleavage by clerocidin in enzyme-free medium is due to the ability of the drug to form covalent adducts with guanines. Indeed, clerocidin was able to specifically react with short oligonucleotides when the guanines were unpaired and exposed as in bulges or in the single-strand form. The clerocidin epoxy group attacks the nitrogen at position 7 of guanines, leading to strand scission at the modified site. Our findings also demonstrate that trapping of topoisomerases by clerocidin is specific for type II enzymes. The guanine-alkylating ability of clerocidin suggests an unprecedented mechanism of topo II poisoning, according to which the enzyme renders the drug reactive toward DNA by distorting the double-helical structure of the nucleic acid at the cleavage site.  相似文献   

14.
A method has been developed to determine the adducts formed upon interaction of cis- and trans-diamminedichloroplatinum(II) (cis- and trans-DDP) with DNA. After 5 h at 50 degrees C in the dark, the amount of cis-DDP bound to salmon sperm DNA was larger than the amount of the trans-isomer. After enzymatic degradation with deoxyribonucleases to nucleotides and Pt-containing (oligo)nucleotides, the various products were separated by DEAE chromatography and analyzed for Pt by flameless AAS. Indications were obtained for the presence of nucleotides containing monofunctionally bound Pt and of adducts originating from interstrand DNA crosslinks. DEAE chromatography of digests of cis-DDP-treated DNA yielded a product with overall charge -1, which was identified with NMR and CD as cis-[Pt(NH3)2-d(pGpG)], the oligonucleotide derived from intrastrand crosslinks between two adjacent guanines. Another major peak contained Pt-oligonucleotides with overall charge -2, which could be derived from intrastrand crosslinks between two guanines at sites with pGpXpG (X=T,C,A or G) base sequences.  相似文献   

15.
Deoxyguanosine 3'-monophosphate (dGMP) was alkylated at the 7-position by dimethyl sulfate, ethylene oxide and styrene oxide in aqueous media and glacial acetic acid, respectively, to yield reasonable quantities of the products, which were purified by HPLC. dGMP adducts are needed as standards for the 32P-postlabelling assay. The stability of the adducts was studied at 37 degrees and neutral pH. The half-lives of disappearance of 7-methyl-dGMP and the beta-isomers of the styrene oxide adducts were about 250 min; 7-hydroxy-ethyl-dGMP and the alpha-isomers of the styrene oxide adducts had respective half-lives of 340 and 440 min. In all cases the main degradation product was the corresponding guanine adduct. The results demonstrate considerable lability of the 7-alkylation products of dGMP which has to be taken into consideration in devising the 32P-postlabelling assay.  相似文献   

16.
Adducts were prepared by reacting styrene oxide with 2-deoxyguanosine 3'-monophosphate (dGMP). Four isomeric N-7-, two diastereomeric N2- and three isomeric O6-adduct were isolated and characterized. The adducts were used as substrates in the 32P-postlabeling reaction. No phosphorylation products were seen with the N-7-alkylation products. One diastereomeric N2-adduct was labeled with 20% efficiency and the second with a markedly lower efficiency. Two of the three O6-adducts were labeled with 5% and the third with 10% labeling efficiency. The results suggest that large N-7-dGMP adducts are very poor substrates of T4 polynucleotide kinase. The diastereomeric products are labeled at different efficiencies indicating stereoselectivity in the kinase reaction.  相似文献   

17.
Many agents successfully used in cancer chemotherapy either directly or indirectly covalently modify DNA. Examples include cisplatin, which forms a covalent adduct with guanines, and doxorubicin, which traps a cleavage intermediate between topoisomerase II and torsionally strained DNA. In most cases, the efficacy of these drugs depends on the efficiency and specificity of their DNA binding, as well as the discrimination between normal and neoplastic cells in their handling of the drug-DNA adducts. While much is known about the chemistry of drug-DNA adducts, little is known regarding the overall specificity of their formation, especially in the context of a whole human genome, where potentially billions of binding sites are possible. We used the combinatorial selection method restriction endonuclease protection, selection, and amplification (REPSA) to determine the DNA-binding specificity of the semisynthetic covalent DNA-binding polyamide tallimustine, which contains a benzoic acid nitrogen mustard appended to the minor groove DNA-binding natural product distamycin A. After investigating over 134 million possible sequences, we found that the highest affinity tallimustine binding sites contained one of two consensus sequences, either the expected distamycin hexamer binding sites followed by a CG base pair (e.g., 5'-TTTTTTC-3' and 5'-AAATTTC-3') or the unexpected sequence 5'-TAGAAC-3'. Curiously, we found that tallimustine preferentially alkylated the N7 position of guanines located on the periphery of these consensus sequences. These findings suggested a cooperative binding model for tallimustine in which one molecule noncovalently resides in the DNA minor groove and locally perturbs the DNA structure, thereby facilitating alkylation by a second tallimustine of an exposed guanine on another side of the DNA.  相似文献   

18.
The mutagenicity of 1,2-dibromoethane is highly dependent upon its conjugation to glutathione by the enzyme glutathione S-transferase. The conjugates thus formed can react with DNA and yield almost exclusively N7-guanyl adducts. We have synthesized the S-haloethyl conjugates of cysteine and glutathione, as well as selected methyl ester and N-acetyl derivatives, and compared them for ability to produce N7-guanyl adducts with calf thymus DNA. The cysteine compounds were found to be more reactive toward calf thymus DNA and yielded higher adduct levels than did the glutathione compounds. Adduct levels tended to be suppressed when there was a net charge on the compound and were not affected by substitution of bromine for chlorine, as expected for a mechanism known to involve an intermediate episulfonium ion. Sequence-selective alkylation of fragments of pBR322 DNA was investigated. The compounds produced qualitatively similar patterns of alkylation, with higher levels of alkylation at runs of guanines. The compounds were also tested for their ability to act as direct mutagens in Salmonella typhimurium TA98 and TA100. None of the compounds caused mutations in the TA98 frameshift mutagenesis assay. In the strain TA100, where mutation of a specific guanine by base-pair substitution produces reversion, all compounds were found to produce mutations, but the levels of mutagenicity did not correlate at all with the levels of DNA alkylation. The ratio of mutations to adducts varied at least 14-fold among the various N7-guanyl adducts examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
G B Panigrahi  I G Walker 《Biochemistry》1991,30(40):9761-9767
Monoacetyl-4-hydroxyaminoquinoline 1-oxide (Ac-HAQO) reacts with DNA to form adducts at the C8- and N2-positions of guanine and with the N6-position of adenine. Only the N2-guanine adduct blocks the 3'-5' exonuclease action of phage T4 DNA polymerase. Piperidine treatment cleaves the DNA at sites bearing C8-guanine adducts. The N2-position of guanine lies in the minor groove of DNA, whereas the C8-position of guanine occupies the major groove. We have taken advantage of these characteristics to employ Ac-HAQO in conjunction with either T4 DNA polymerase or piperidine in a footprinting technique to probe the interaction of the Escherichia coli integration host factor (IHF) with its binding site. We show that when IHF binds to its recognition site both the N2- and C8-positions of guanines are protected from modification by AcHAQO. In addition, the binding of IHF to DNA was prevented when either an N2- or a C8-AQO adduct was present in the binding site. When dimethylsulfate was used as the footprinting reagent, IHF protected against methylation of the N3 position of adenine in the minor groove but not the N7 position of guanine in the major groove. The difference in results obtained with the two reagents is ascribed to their relative sizes. Both DMS and AcHAQO are excluded by IHF from the minor groove, but only the larger AcHAQO molecule is excluded from the major groove.  相似文献   

20.
The reactivity of photodegradation products of benzo(a)pyrene vs. DNA has been assessed using both genomic and oligonucleotide based DNA electrochemical sensors. The kinetic of a photooxidation reaction of benzo(a)pyrene (BaP) carried out in controlled conditions using a 6 W UV lamp peaked at 365 nm has been studied using LC with fluorimetric detection. Degradation of benzo(a)pyrene by both UV and UV/H(2)O(2) exhibited pseudo-first-order reaction kinetics with half-lives ranging from 3.0 to 9.8h depending on the pH and on the amount of H(2)O(2). The oxidation products of benzo(a)pyrene obtained in different conditions were tested on genomic ssDNA electrochemical sensors obtained via immobilisation of salmon testis ss-DNA on graphite screen-printed electrodes. Guanines oxidation signals obtained using chronopotentiometry were used to detect the interaction of the products with DNA. The dose-response curve obtained with benzo(a)pyrene incubated 24 h at pH 4.7 was different from that of the parent compound indicating a different type of interaction with DNA. A DNA hybridisation sensor was also assembled using a thiolated/biotynilated 24-mer oligonucleotide immobilised on a gold screen-printed electrode and avidin-alkaline phosphatase conjugate. A voltammetric detection of naphtol was used to detect the hybridisation reaction. A net inhibition of the hybridisation reaction was observed after incubation with benzo(a)pyrene oxidation products that was attributed to the formation of stable adducts with the guanines of the biotinylated strand. LC-MS-MS studies of the oxidation products confirmed the presence of chemical species potentially forming adducts with DNA. The data reported demonstrate that DNA electrochemical sensors have the potential to be used to monitor remediation processes and to assess the potential toxicity vs. DNA of chemicals forming stable DNA adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号