首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alanine and sodium fluxes across mucosal border of rabbit ileum   总被引:21,自引:14,他引:7  
Unidirectional influxes of L-alanine and Na from the mucosal solution into the epithelium of in vitro rabbit ileum have been determined. In the presence of 140 mM Na, alanine influx is approximately 2.2 µmoles/hr cm2, but is inhibited if the NaCl in the mucosal solution is replaced by choline Cl, Tris-Cl, mannitol, LiCl, or KCl. Although alanine influx is strongly dependent upon Na in the mucosal solution, it is uninfluenced by marked reduction of intracellular Na pools. In addition, alanine influx is unaffected by intracellular alanine concentration. Na influx is markedly inhibited by the presence of Li. Evidence is presented that Na transport across the mucosal border cannot be attributed to simple diffusion even though the net flux across this surface is in the direction of the electrochemical potential difference.  相似文献   

2.
The brain develops and functions in a complex ionic milieu, which is a prerequisite for neurotransmitter function and neuronal signaling. Neurotransmitters and ion fluxes are, however, important not only in neuronal signaling, but also in the control of neural differentiation, and in this review, we highlight the recent advances in our understanding of how the gamma-amino butyric acid (GABA) neurotransmitter and ion fluxes are relevant for cell cycle control and neural differentiation. Conversely, proteins previously associated with ion transport across membranes have been endowed with novel ion-independent functions, and we discuss this in the context of gap junctions in cell adhesion and of the neuron-specific K(+)-Cl(-) cotransporter KCC2 in dendritic spine development. Collectively, these findings provide a richer and more complex picture of when ion fluxes are needed in neural development and when they are not.  相似文献   

3.
Lew RR 《Plant & cell physiology》2010,51(11):1889-1899
Plasma membrane fluxes of the large unicellular model algal cell Eremosphaera viridis (De Bary) were measured under various light regimes to explore the role of plasma membrane fluxes during photosynthesis and high light-induced chloroplast translocation. Plasma membrane fluxes were measured directly and non-invasively with self-referencing ion-selective (H(+), Ca(2+), K(+) and Cl(-)) potentiometric microelectrodes and oxygen amperometric microelectrodes. At light irradiances high enough to induce chloroplast migration from the cell periphery to its center, oxygen evolution declined to respiratory net O(2) uptake prior to any significant chloroplast translocation, while net K(+) and Cl(-) influx increased during the decline in photosynthetic activity (and the membrane potential depolarized). The results suggest that chloroplast translocation is not the cause of the cessation of O(2) evolution at high irradiance. Rather, the chloroplast translocation may play a protective role: shielding the centrally located nucleus from damaging light intensities. At both high and low light intensities (similar to ambient growth conditions), there was a strong inverse correlation between H(+) net fluxes and respiratory and photosynthetic net O(2) fluxes. A similar inverse relationship was also observed for Ca(2+) net fluxes, but only at higher light intensities. The net H(+) fluxes are small relative to the buffering capacity of the cell, but are clearly related to both photosynthetic and respiratory activity.  相似文献   

4.
The diarrhea observed in patients which cholera is known to be related to secretion of water and electrolytes into the intestinal lumen. However, the exact mechanisms involved in these secretory processes have remained unclear. Although it is clear that purified toxin acts on epithelial cell metabolism, its activity on Na+ transport across intestinal mucosa is equivocal: reported either to prevent net Na+ absorption or to cause net secretion of Na+ from serosa to mucosa. Since total transmural Na+ fluxes across “leaky” epithelia involve very significant movement via a paracellular shunt pathway, we studied the effects of cholera toxin on the cellular and paracellular pathways of Na+ movement. Unidirectional Na+ fluxes were examined as functions of applied potential in control tissues and in tissues from the same animal treated with purified cholera toxin. Treatment of rabbit ileum in vitro with toxin stimulated the cellular component of serosa-to-mucosa Na+ flux (from 2.41 ± 0.49 μequiv./h per cm2 under control conditions to 4.71 ± 0.43 μequiv./h per cm2 after treatment with toxin, P < 0.01). The effect of cholera toxin on Na+ movement through the cells from mucosa to serosa appeared to be insignificant. Finally, a marked decrease in the Na+ permeability (P < 0.01) and no detectable significant changes in transference number for Na+ of the paracellular shunt pathway were observed following treatment with cholera toxin. These results provide direct evidence for the hypothesis that purified cholera toxin stimulates active sodium secretion but has minimal effect on sodium absorption.  相似文献   

5.
Summary Ion flux relations in the unicellular marine algaAcetabularia have been investigated by uptake and washout kinetics of radioactive tracers (22Na+,42K+,36Cl and86Rb+) in normal cells and in cell segments with altered compartmentation (depleted of vacuole or of cytoplasm). Some flux experiments were supplemented by simultaneous electrophysiological recordings. The main results and conclusions about the steady-state relations are: the plasmalemma is the dominating barrier for translocation of K+ with influx and efflux of about 100 nmol·m–2·sec–1×K+ passes three- to sevenfold more easily than Rb+ does. Under normal conditions, Cl (the substrate of the electrogenic pump, which dominates the electrical properties of the plasmalemma in the resting state) shows two efflux components of about 17 and 2 mol·m–2·sec–1, and a cytoplasmic as well as vacuolar [Cl] of about 420mm ([Cl] o =529mm). At 4°C, when the pump is inhibited, both influx and efflux, as well as the cellular [Cl], are significantly reduced. Na+ ([Na+] i : about 70mm, [Na+] o : 461mm), which is of minor electrophysiological relevance compared to K+, exhibits rapid and virtually temperature-insensitive (electroneutral) exchange (two components with about 2 and 0.2 mol·m–2·sec–1 for influx and efflux). Some results with Na+ and Cl are inconsistent with conventional (noncyclic) compartmentation models: (i) equilibration of the vacuole (with the external medium) can be faster than equilibration of the cytoplasm, (ii) absurd concentration values result when calculated by conventional compartmental analysis, and (iii) large amounts of ions can be released from the cell without changes in the electrical potential of the cytoplasm. These observations can be explained by the particular compartmentation of normalAcetabularia cells (as known by electron micrographs) with about 1 part cytoplasm, 5 parts central vacuole, and 5 parts vacuolar vesicles. These vesicles communicate directly with the central vacuole, with the cytoplasm and with the external medium.  相似文献   

6.
V I Pasechnik 《Biofizika》1988,33(3):532-533
A mathematical model of spreading depression wave is proposed and ionic fluxes are calculated.  相似文献   

7.
8.
9.
Immobilized cultured tobacco cells become polarized upon the addition of naphthalene-1-acetic acid and start to elongate from an initial spherical shape. The question as to how a diffuse-growing cell forms a polar axis is addressed here with approaches successfully applied to the study of tip growth. With two kinds of vibrating probes the electric current flow and proton fluxes were mapped around such elongating cells. No consistent polar pattern of ion fluxes, which is typical for actively tip-growing cells, was detected. Therefore, other signals must provide the positional information needed for polar axis formation. Furthermore, neither a specific pattern of intracellular Ca(2+) concentration nor a polar distribution of putative ion-channel antagonist-binding sites were found in elongating tobacco cells. Auxin flux, on the other hand, was found to be important as TIBA, an inhibitor of polar auxin transport, clearly inhibited elongation in a concentration-dependent way. Cross-linking of arabinogalactan-proteins with the beta-Yariv reagent also resulted in inhibition of elongation. A model is proposed for the induction of polar growth where localized auxin efflux starts a signal cascade that triggers molecules that reorient microtubules. These then guide cellulose deposition in the cell wall, which in turn alters cell wall mechanics and leads to elongation. In this scheme, arabinogalactan-proteins are not causal agents but are probably important regulators of growth and survival of the cell.  相似文献   

10.
Pesci P 《Plant physiology》1988,86(3):927-930
The increase in proline induced by ABA, a process stimulated by NaCl or KCl in barley leaves, did not occur when Na+ (or K+) was present in the external medium as the gluconate salt, namely with an anion unable to permeate the plasma membrane. However, proline increase was restored, to different extents, by the addition of various chloride salts but not by ammonium chloride. Moreover, it was shown that the stimulation of the process by NaCl (or KCl) was variously affected by the presence of different salts; all the ammonium salts (10 millimolar NH4+ concentration) inhibited this stimulation almost completely. Inhibition by NH4+ was accompanied by a decreased Na+ influx (−40%). Also, in the case of Na-gluconate, Na+ uptake was reduced and the addition of Cl as the calcium or magnesium salt (but not as ammonium salt) restored both the ion influxes and the increase in proline typical of NaCl treatments. Both 4,4′-diisothiocyano-2,2′-disulfonic acid stilbene (DIDS), an anion transport inhibitor, and tetraethylammonium chloride (TEA), a K+ channels-blocking agent, caused, as well as with a reduction of ion influxes, an inhibition of the proline accumulation. The inhibition was practically total with 1 millimolar DIDS and about 80% with 20 millimolar TEA. A possible role of ion influxes in the process leading to the increase in proline induced by ABA is proposed.  相似文献   

11.
12.
Summary Transepithelial potentials (TEP's) were measured in Dungeness crabs exposed to a variety of experimental media. The TEP's can be accounted for as diffusion potentials. In sea water (SW) theP Na/P Cl ratio (calculated by substitution in the Goldman equation) was 0.68, but in dilutions of SW the value increased, reaching a maximum of 3.33 in freshwater (FW). When the calcium and magnesium concentrations in the diluted media were maintained at SW levels theP Na/P Cl remained close to that in SW.The effluxes of Na and Cl were monitored in crabs exposed to the experimental media and the TEP's were measured simultaneously. After transfer from SW to FW the decrease in Na efflux was considerably less than expected from the change in potential alone, indicating an increased permeability to sodium, while transfer from SW to 500 mM NaCl caused a 3.4-fold increase in Na efflux without any associated change of potential. These results indicate an increase in the permeability of the gill epithelium to Na as the ambient concentrations of Ca and Mg decline. The Cl effluxes are not dependent on the external concentration of divalent ions, but about 30% of the Cl efflux may be due to exchange diffusion.Abbreviations FW freshwater - SW sea water - TEP transepithelial potential This project was in part supported by faculty research grants from Fordham University, Bronx, NY and Towson State University, Towson, MD to GDR  相似文献   

13.
An ion exchange membrane bioreactor (IEMB), consisting of a monoanion permselective membrane dialyzer coupled to a stirred anoxic vessel with an enriched mixed denitrifying culture, has been studied for nitrate removal from drinking water. The influence of nitrate and chloride concentrations on the selectivity of nitrate transport in the IEMB process was investigated. With appropriate dosing of chloride ions to the IEMB biocompartment, it was possible to regulate the net bicarbonate flux in the system, thus maintaining the bicarbonate concentration in the treated water at the desired level. The latter was not possible to achieve in Donnan dialysis, operated as a single process in which, besides the lower nitrate removal efficiency found, bicarbonate was co-extracted together with nitrate from the polluted water stream. Residual carbon source (ethanol) and nitrite were not detected in the treated water produced in the IEMB system. With a concentration of nitrate in the polluted water three times higher than the maximum contaminant level of 50 mg L(-1) allowed, the IEMB process was successfully operated for a period of 1 month before exceeding this limit.  相似文献   

14.
15.
Endocytic traffic is a complex and elegant operation involving cargo sorting, membrane budding and tubulation, generation of force, and the formation of organellar contacts. The role of specific proteins and lipids in these processes has been studied extensively. By comparison, precious little is understood about the contribution of the endocytic fluid to these events, despite much evidence that alteration of the contents can severely affect membrane traffic along the endocytic pathway. In particular, it has long been appreciated that dissipation of ionic gradients arrests endosome-to-lysosome maturation. How cells sense inorganic ions and transmit this information have remained largely enigmatic. Herein, we review the experimental findings that reveal an intimate association between luminal ions, their transport, and endocytic traffic. We then discuss the ionic sensors and the mechanisms proposed to convert ion concentrations into protein-based trafficking events, highlighting the current paucity of convincing explanations.  相似文献   

16.
Ion clustering and the solvation properties in the NaCl solutions are explored by molecular dynamics simulations with several popular force fields. The existence of ions has a negligible disturbance to the hydrogen bond structures and rotational mobility of water beyond the first ion solvation shells, which is suggested by the local hydrogen bond structures and the rotation times of water. The potential of mean force (PMF) of ion pair in the dilute solution presents a consistent view with the populations of ion clusters in the electrolyte solutions. The aggregation level of ions is sensitive to the force field used in the simulations. The ion-ion interaction potential plays an important role in the forming of the contact ion pair. The entropy of water increases as the ion pair approaches each other and the association of ion pair is driven by the increment of water entropy according to the results from the selected force fields. The kinetic transition from the single solvent separated state to the contact ion pair is controlled by the enthalpy loss of solution.
Figure
Ion pairing and ion induction to solvent play an important role in the protein folding and chemical reactions in the water solutions. The existence of ions has a negligible disturbance to the hydrogen bond structures and rotational mobility of water beyond the first ion solvation shells in the NaCl solutions. The clustering level of ions is sensitive to the force field used in the simulations. The formation of NaCl ion pair in the dilute solution is driven by the entropy increment of water  相似文献   

17.
Ion fluxes during T5 bacteriophage infection of Escherichia coli   总被引:8,自引:0,他引:8  
When T5 bacteriophage infects Escherichia coli B, 42K+ is immediately released from cells that have been preloaded with this ion. The rate of ion release and the total amount released are dependent on the multiplicity of infection and are not diminished by the use of mutants which can only inject 8% of their DNA. Normally, the ion release stops at about 6 min postinfection. If the host cells contain the colicinogenic factor, Col Ib, so that the infection is abortive, K+ release continues. Evidence is presented to show that this continued ion release cannot be explained by a “damage and repair” hypothesis. The results are, however, consistent with the interpretation of membrane depolarization due to ion pore formation as the cause of the abortive infection.  相似文献   

18.
19.
The administration of SCT, natural and synthetic, has no apparent effect on the ileal water and electrolyte transport in the rabbit. The failure of SCT to influence ileal transport of water and electrolytes in the rabbit, as it does in man, may be due to differences in the rabbit intestinal response to a foreign peptide hormone.  相似文献   

20.
Unidirectional Cl fluxes across in vitro segments of rabbit ileum have been determined both in the absence and in the presence of an electrochemical potential gradient. The results indicate that Cl transport in this preparation can be attributed to purely passive forces uninfluenced by solvent drag or exchange diffusion. Furthermore, on the basis of this and previous studies, it has been demonstrated that the sum of the partial ionic conductances of Na and Cl accounts for at least 90 per cent of the total tissue conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号