首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for the isolation of metabolically active heterocysts from Anabaena cylindrica. These isolated heterocysts accounted for up to 34% of the acetylene-reducing activity of whole filaments and had a specific activity of up to 1,560 nmol of C2H4 formed per mg of heterocyst chlorphyll per min. Activity of glutamine synthetase was coupled to activity of nitrogenase in isolated heterocysts as shown by acetylene-inhibitable formation of [13N]NH3 and of amidelabeled [13N]glutamine form [13N]N2. A method is also described for the production of 6-mCi amounts of [13N]NH3. Isolated heterocysts formed [13N]glutamine from [13N]NH3 and glutamate, and [14C]glutamine from NH3 and [14C]glutamate, in the presence of magnesium adenosine 5'-triphosphate. Methionine sulfoximine strongly inhibited these syntheses. Glutamate synthase is, after nitrogenase and glutamine synthetase, the third sequential enzyme involved in the assimilation of N2 by intact filaments. However, the kinetics of solubilization of the activity of glutamate synthase during cavitation of suspensions of A. cylindrica indicated that very little, if any, of the activity of that enzyme was located in heterocysts. Concordantly, isolated heterocysts failed to form substantial amounts of radioactive glutamate from either [13N]glutamine or alph-[14C]ketoglutarate in the presence of other substrates and cofactors of the glutamate synthase reaction. However, they formed [14C]glutamate rapidly from alpha-[14C]ketoglutarate by aminotransferase reactions, with various amino acids as the nitrogen donor. The implication of these findings with regard to the identities of the substances moving between heterocysts and vegetative cells are discussed.  相似文献   

2.
Mutations in the GLN3 gene prevented a normal increase in the NAD-glutamate dehydrogenase and glutamine synthetase levels in glutamate-grown Saccharomyces cerevisiae cells, whereas mutations in the URE2 gene resulted in high levels of these enzymes in glumate- and glutamine-grown cells. A ure2 gln3 double mutant had low levels of glutamate dehydrogenase and glutamine synthetase in cells grown on glutamate and glutamine; thus, gln3 mutations were epistatic to the ure2 mutations. The results suggest that the GLN3 product is capable of promoting increases in enzyme levels in the absence of a functional URE2 product and that the URE2 product antagonizes the GLN3 product. The URE2 and GLN3 genes were also found to regulate the level of arginase activity. This regulation is completely independent of the regulation of arginase by substrate induction. The activities of glutamate dehydrogenase, glutamine synthetase, and arginase were higher in cells grown on glutamate as the nitrogen source than they were in cells grown under a nitrogen-limiting condition. It had previously been shown that the levels of these enzymes can be increased by glutamine deprivation. We propose that the URE2-GLN3 system regulates enzyme synthesis, in response to glutamine and glutamate, to adjust the intracellular concentration of ammonia so as to maintain glutamine at the level required for optimal growth.  相似文献   

3.
To investigate the transport of primary metabolites in Anabaena cylindrica from vegetative cells into heterocysts, intact filaments were labeled with the heterocysts were separated from the vegetative cells after different time intervals, and the labeling patterns were determined. After a 20-s fixation time, a high percentage of labeling of alanine, glutamate and glutamine, and, to a lesser extent, glucose 6-phosphate was found in heterocysts as compared with whole filaments. The results can be explained if transport of alanine, glutamate, and sugars from vegetative cells into heterocysts is assumed. Alanine can serve as a precursor for reducing equivalents if it is oxidized to glutamine which flows back to the vegetative cells. This idea is supported by an experiment in which exogenous alanine is readily converted by isolated heterocysts to glutamate and glutamine under a N2-H2 atmosphere. The incorporation of [14C]carbonate in isolated heterocysts demonstrated the absence of the reductive pentose phosphate pathway; however, it revealed marked activity of an acid fixation reaction.  相似文献   

4.
5.
The addition of DL-7-azatryptophan (AZAT), a tryptophan analog, to continuous cultures of Anabaena sp. strain CA grown with 10 mM nitrate as the nitrogen source resulted in the differentiation of heterocysts. Analysis of the intracellular amino acid pools of Anabaena sp. strain CA after the addition of AZAT showed a marked decline in the intracellular glutamate pool and a slight increase in the levels of glutamine. The in vitro activity of glutamate synthase, the second enzyme involved in primary ammonia assimilation in Anabaena spp., was partially inhibited by the presence of AZAT at concentrations which are effective in triggering heterocyst formation (15% inhibition at 10 microM AZAT and up to 85% inhibition at 1.0 mM AZAT). Azaserine, a glutamine analog and potent glutamate synthase inhibitor, had no effect on the triggering of heterocyst development from undifferentiated batch and continuous cultures of Anabaena sp. strain CA. However, the presence of 1.0 microM azaserine significantly decreased the intracellular glutamate pool and increased the glutamine pool. The addition of AZAT also caused a decrease in the C-phycocyanin content of Anabaena sp. strain CA as a result of its proteolytic degradation. AZAT also had an inhibitory effect on the nitrogenase activity of Anabaena sp. strain CA. All these results suggest that AZAT causes a general nitrogen starvation of Anabaena sp. strain CA filaments, triggering heterocyst synthesis.  相似文献   

6.
The hetL gene from the cyanobacterium Nostoc sp. PCC 7120 encodes a 237 amino acid protein (25.6kDa) containing 40 predicted tandem pentapeptide repeats. Nostoc sp. PCC 7120 is a filamentous cyanobacterium that forms heterocysts, specialized cells capable of fixing atmospheric N(2) during nitrogen starvation in its aqueous environment. Under these conditions, heterocysts occur in a regular pattern of approximately one out of every 10-15 vegetative cells. Heterocyst differentiation is highly regulated involving hundreds of genes, one of which encodes PatS, thought to be an intercellular peptide signal made by developing heterocysts to inhibit heterocyst differentiation in neighboring vegetative cells, thus contributing to pattern formation and spacing of heterocysts along the filament. While overexpression of PatS suppresses heterocyst differentiation in Nostoc sp. PCC 7120, overexpression of HetL produces a multiple contiguous heterocyst phenotype with loss of the wild type heterocyst pattern, and strains containing extra copies of hetL allow heterocyst formation even in cells overexpressing PatS. Thus, HetL appears to interfere with heterocyst differentiation inhibition by PatS, however, the mechanism for HetL function remains unknown. As a first step towards exploring the mechanism for its biochemical function, the crystal structure of HetL has been solved at 2.0A resolution using sulfur anomalous scattering.  相似文献   

7.
The effects of various amino acids on growth and heterocyst differentiation have been studied on wild type and a heterocystous, non-nitrogen-fixing (het+ nif-) mutant of Anabaena doliolum. Glutamine, arginine and asparagine showed maximum stimulation of growth. Serine, proline and alanine elicited slight stimulation of growth of wild type but failed to show any stimulatory effect on mutant strain. Valine, glutamic acid, iso-leucine and leucine at a concentration of as low as 0.1 mM were inhibitory to growth of parent type. Methionine, aspartic acid, threonine, cysteine, and tryptophan did not affect growth at concentrations lower than 0.5 mM. But at 1 mM, these amino acids were inhibitory. In addition to the stimulatory effects of glutamine, arginine and asparagine, the heterocyst frequency was also repressed by these amino acids. Glutamine and arginine at 2 mM completely repressed heterocyst differentiation in the mutant strain; however, other amino acids failed to repress the differentiation of heterocysts. Our results suggest that glutamine and arginine are utilized as nitrogen sources. This is strongly supported from the data of growth and heterocyst differentiation of mutant strain, where at least with glutamine there is good growth without heterocyst formation. Studies with glutamine and arginine on other N2-fixing blue-green algae may reveal the regulation of the heterocyst-nitrogenase sub-system.  相似文献   

8.
Phycobiliprotein degradation can be initiated in cultures of the cyanobacterium Anabaena by removal of combined nitrogen from the medium. Certain strains of Anabaena differentiate cells specialized for aerobic nitrogen fixation (heterocysts) under such conditions. We describe here a procedure for the preparation of extracts from heterocysts or vegetative cells that contain an activity capable of degrading only the phycobiliproteins in a mixture of soluble Anabaena proteins in vitro. This activity increased under nitrogen starvation conditions or in ammonia-replete cultures treated with the glutamine synthetase inhibitor methionine sulfoximine. The increase in activity induced by nitrogen starvation was prevented by chloramphenicol or by carbon starvation. Under all these conditions, phycobiliprotein degradative activity assayed in vitro was correlated with the loss of phycobiliprotein absorbance in vivo. Finally, starvation of a met auxotroph of Anabaena for methionine (in the presence of ammonia) did not induce phycobiliprotein degradation in vivo or the increase in proteinase activity. Together with direct measurements of ppGpp, these results indicate that proteolysis in Anabaena is not controlled by compounds associated with the stringent response in Escherichia coli. Since the increase in proteinase activity appears to be regulated by the same variables that control heterocyst differentiation, the activity should provide a useful biochemical marker for the early events of differentiation.  相似文献   

9.
Methylammonium/ammonium ion, glutamine, glutamate, arginine and proline uptake, and their assimilation as nitrogen sources, was studied in Nostoc muscorum and its glutamine synthetase-deficient mutant. Glutamine served as nitrogen source independent of glutamine synthetase activity. Glutamate was not metabolised as a nitrogen source but still inhibited nitrogenase activity and diazotrophic growth. Glutamine synthetase activity was essential for the assimilation of N2, ammonia, arginine and proline as nitrogen sources but not for the control of their transport, heterocyst formation, and production of ammonia or aminoacid dependent repressor signal for N2-fixing heterocysts. These results also suggest that glutamine synthetase serves as the sole route of ammonia assimilation and glutamine synthesis, and ammonia per se as the repressor signal for N2-fixing heterocysts and methylammonium (ammonium) transport.  相似文献   

10.
11.
The metabolism of 2.5 mM-[15N]aspartate in cultured astrocytes was studied with gas chromatography-mass spectrometry. Three primary metabolic pathways of aspartate nitrogen disposition were identified: transamination with 2-oxoglutarate to form [15N]glutamate, the nitrogen of which subsequently was transferred to glutamine, alanine, serine and ornithine; condensation with IMP in the first step of the purine nucleotide cycle, the aspartate nitrogen appearing as [6-amino-15N]adenine nucleotides; condensation with citrulline to form argininosuccinate, which is cleaved to yield [15N]arginine. Of these three pathways, the formation of arginine was quantitatively the most important, and net nitrogen flux to arginine was greater than flux to other amino acids, including glutamine. Notwithstanding the large amount of [15N]arginine produced, essentially no [15N]urea was measured. Addition of NaH13CO3 to the astrocyte culture medium was associated with the formation of [13C]citrulline, thus confirming that these cells are capable of citrulline synthesis de novo. When astrocytes were incubated with a lower (0.05 mM) concentration of [15N]aspartate, most 15N was recovered in alanine, glutamine and arginine. Formation of [6-amino-15N]adenine nucleotides was diminished markedly compared with results obtained in the presence of 2.5 mM-[15N]aspartate.  相似文献   

12.
A positive selection method for isolation of nitrogenase-derepressed mutant strains of a filamentous cyanobacterium, Anabaena variabilis, is described. Mutant strains that are resistant to a glutamate analog, L-methionine-D,L-sulfoximine, were screened for their ability to produce and excrete NH4+ into medium. Mutant strains capable of producing nitrogenase in the presence of NH4+ were selected from a population of NH4+-excreting mutants. One of the mutant strains (SA-1) studied in detail was found to be a conditional glutamine auxotroph requiring glutamine for growth in media containing N2, NO3-, or low concentrations of NH4+ (less than 0.5 mM). This glutamine requirement is a consequence of a block in the assimilation of NH4+ produced by an enzyme system like nitrogenase. Glutamate and aspartate failed to substitute for glutamine because of a defect in the transport and utilization of these amino acids. Strain SA-1 assimilated NH4+ when the concentration in the medium reached about 0.5 mM, and under these conditions the growth rate was similar to that of the parent. Mutant strain SA-1 produced L-methionine-D,L-sulfoximine-resistant glutamine synthetase activity. Kinetic properties of the enzyme from the parent and mutant were similar. Mutant strain SA-1 can potentially serve as a source of fertilizer nitrogen to support growth of crop plants, since the NH4+ produced by nitrogenase, utilizing sunlight and water as sources of energy and reductant, respectively, is excreted into the environment.  相似文献   

13.
1. Aspergillus nidulans, Neurospora crassa and Escherichia coli were grown on media containing a range of concentrations of nitrate, or ammonia, or urea, or l-glutamate, or l-glutamine as the sole source of nitrogen and the glutamate dehydrogenate and glutamine synthetase of the cells measured. 2. Aspergillus, Neurospora and Escherichia coli cells, grown on l-glutamate or on high concentrations of ammonia or on high concentrations of urea, possessed low glutamate dehydrogenase activity compared with cells grown on other nitrogen sources. 3. Aspergillus, Neurospora and Escherichia coli cells grown on l-glutamate possessed high glutamine synthetase activity compared with cells grown on other nitrogen sources. 4. The hypothesis is proposed that in Aspergillus, Neurospora and Escherichia colil-glutamate represses the synthesis of glutamate dehydrogenase and l-glutamine represses the synthesis of glutamine synthetase. 5. A comparison of the glutamine-synthesizing activity and the gamma-glutamyltransferase activity of glutamine synthetase in Aspergillus and Neurospora gave no indication that these fungi produce different forms of glutamine synthetase when grown on ammonia or l-glutamate as nitrogen sources.  相似文献   

14.
Growth and regulation of heterocyst and nitrogenase by fixed nitrogen sources were studied comparatively in parent and glutamine auxotrophic mutant of Anabaena cycadeae. The parent strain grew well on N2, NH+4 or glutamine while the mutant strain grew on glutamine but not on N2 or NH+4. The total lack of active glutamine synthetase in the mutant strain thus appears to be the reason for its observed lack of growth in N2 or NH+4, which explains why it is a glutamine auxotroph and at the same time shows glutamine synthetase to be the sole primary ammonia assimilating enzyme. NH+4 repression of heterocyst and nitrogenase in the mutant and the parental strains and their derepression by L-methionine-DL-sulfoximine suggest that NH+4 per se and not glutamine synthetase mediated pathway of ammonia assimilation is the initial repressor signal of heterocyst and nitrogenase in A. cycadeae.  相似文献   

15.
The utilization of amino acids for growth and their effects on nitrogen fixation differ greatly among the several strains of each species of Azospirillum spp. that were examined. A. brasiliense grew poorly or not at all on glutamate, aspartate, serine, or histidine as the sole nitrogen and carbon sources. Nitrogen fixation by most A. brasiliense strains was inhibited only slightly even by 10 mM concentrations of these amino acids. In contrast, A. lipoferum and A. amazonense grew very well on glutamate, aspartate, serine, or histidine as the sole nitrogen and carbon sources; nitrogen fixation, which was measured in the presence of malate or sucrose, was severely inhibited by these amino acids. It was concluded that growth on histidine as the sole source of nitrogen, carbon, and energy may be used for the taxonomic characterization of Azospirillum spp. and for the selective isolation of A. lipoferum. The different utilization of various amino acids by Azospirillum spp. may be important for their establishment in the rhizosphere and for their associative nitrogen fixation with plants. The physiological basis for the different utilization of glutamate by Azospirillum spp. was investigated further. A. brasiliense and A. lipoferum exhibited a high affinity for glutamate uptake (Km values for uptake were 8 and 40 microM, respectively); the Vmax was 6 times higher in A. lipoferum than in A. brasiliense. At high substrate concentrations (10 mM), the nonsaturable component of glutamate uptake was most active in A. lipoferum and A. amazonense.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The utilization of amino acids for growth and their effects on nitrogen fixation differ greatly among the several strains of each species of Azospirillum spp. that were examined. A. brasiliense grew poorly or not at all on glutamate, aspartate, serine, or histidine as the sole nitrogen and carbon sources. Nitrogen fixation by most A. brasiliense strains was inhibited only slightly even by 10 mM concentrations of these amino acids. In contrast, A. lipoferum and A. amazonense grew very well on glutamate, aspartate, serine, or histidine as the sole nitrogen and carbon sources; nitrogen fixation, which was measured in the presence of malate or sucrose, was severely inhibited by these amino acids. It was concluded that growth on histidine as the sole source of nitrogen, carbon, and energy may be used for the taxonomic characterization of Azospirillum spp. and for the selective isolation of A. lipoferum. The different utilization of various amino acids by Azospirillum spp. may be important for their establishment in the rhizosphere and for their associative nitrogen fixation with plants. The physiological basis for the different utilization of glutamate by Azospirillum spp. was investigated further. A. brasiliense and A. lipoferum exhibited a high affinity for glutamate uptake (Km values for uptake were 8 and 40 microM, respectively); the Vmax was 6 times higher in A. lipoferum than in A. brasiliense. At high substrate concentrations (10 mM), the nonsaturable component of glutamate uptake was most active in A. lipoferum and A. amazonense.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
15N labelling was used to investigate the pathway of nitrogenassimilation in photorespiratory mutants of barley (Hordeumvulgare cv. Maris Mink), in which the leaves have low levelsof glutamine synthetase (GS) or glutamate synthase, key enzymesof ammonia assimilation. These plants grew normally when maintainedin high CO2, but the deletions were lethal when photorespirationwas initiated by transfer to air. Enzyme levels in roots weremuch less affected, compared to leaves, and assimilation oflabelled nitrate into amino acids of the root showed very littledifference between wild type and mutants. Organic nitrogen wasexported from roots in the xylem sap mainly as glutamine, levelsof which were somewhat reduced in the GS-deficient mutant andenhanced in the glutamate synthase deficient mutant. In theleaf, the major effect was seen in the glutamatesynthase mutant,which had an extremely limited capacity to utilize the importedglutamine and amino acid synthesis was greatlyrestricted. Thiswas confirmed by the supply of [15N]-glutamine directly to leaves.Leaves of the GS-deficient mutant assimilatedammonia at about75% the rate found for the wild type, and this was almost completelyeliminated by addition of the inhibitormethionine sulphoximine.Root enzymes, together with residual levels of the deleted enzymesin the leaves, have sufficient capacityfor ammonia assimilation,through the glutamate synthase cycle, to provide adequate inputof nitrogen for normal growth of themutants, if photorespiratoryammonia production is suppressed. Key words: Hordeum vulgare, 15N, glutamine synthetase, glutamate synthase, ammonia assimilation  相似文献   

18.
Nitrogenase biosynthesis in Klebsiella pneumoniae including mutant strains, which produce nitrogenase in the presence of NH+4 (Shanmugam, K.T., Chan, Irene, and Morandi, C. (1975) Biochim. Biophys. Acta 408, 101--111) is repressed by a mixture of L-amino acids. Biochemical analysis shows that glutamine synthetase activity in strains SK-24, SK-28, and SK-29 is also repressed by amino acids, with no detectable effect on glutamate dehydrogenase. Among the various amino acids, L-glutamine in combination with L-aspartate was found to repress nitrogenase biosynthesis completely. In the presence of high concentrations of glutamine (1 mg/ml) even NH+4 repressed nitrogenase biosynthesis in the strains SK-27, SK-37, SK-55 and SK-56. Under these conditions, increased glutamate dehydrogenase activity was also detected. Physiological studies show that nitrogenase derepressed strains are unable to utilize NH+4 as sole source of nitrogen for biosynthesis of glutamate for biosynthesis of glutamate, whereas back mutations leading to NH+4 utilization results in sensitivity to repression by NH+4. These findings suggest that amino acids play an important role as regulators of nitrogen fixation.  相似文献   

19.
Four strains of the coccolithophore Emiliania huxleyi (CCMP strains 370, 373, 374, 379) were tested for their ability to grow on various nitrogen sources. All strains grew on ammonium, nitrate, and urea, although growth of CCMP379 on urea was low. Responses to other dissolved organic nitrogen (DON) sources varied. CCMP379 did not grow on any DON source other than urea. All other strains grew on one of the two tested amino acids: CCMP370 and CCMP373 on glutamine, and CCMP374 on alanine. All three of these strains also grew on hypoxanthine; in addition, two grew well on acetamide and one on ethanolamine. E. huxleyi strains also differed in their susceptibility to predation by the ciliate Strobilidium sp. CCMP374 was ingested at substantially higher rates than CCMP373 regardless of E. huxleyi growth condition. Ciliate feeding rates also depended on E. huxleyi growth condition. For CCMP374, feeding rates were 2× higher on growing E. huxleyi cells than on non-growing cells (average 27.5 versus 15.6 cells ciliate−1 h−1, respectively). For CCMP373, a relationship between E. huxleyi growth rate and ciliate feeding rate was not evident, but E. huxleyi grown on some N sources (ammonium, nitrate, urea) were ingested at consistently higher rates than E. huxleyi grown on other sources (ethanolamine, glutamine). Interstrain differences in the ability to utilize DON and resist predation may contribute to maintenance of high genetic diversity within this cosmopolitan, bloom-forming species.  相似文献   

20.
Analysis of soil solution from forest sites dominated by Eucalyptus grandis and Eucalyptus maculata indicates that soluble forms of organic nitrogen (amino acids and protein) are present in concentrations similar to those of mineral nitrogen (nitrate and ammonium). Experiments were conducted to determine the extent to which mycorrhizal associations might broaden nitrogen source utilization in Eucalyptus seedlings to include organic nitrogen. In isolation, species of ectomycorrhizal fungi from northern Australia show varying abilities to utilize mineral and organic forms of nitrogen as sole sources. Pisolithus sp. displayed strongest growth on NH4+, glutamine and asparagine, but grew poorly on protein, while Amanita sp. grew well both on mineral sources and on a range of organic sources (e.g. arginine, asparagine, glutamine and protein). In sterile culture, non-mycorrhizal seedlings of Eucalyptus grandis and Eucalyptus maculata grew well on mineral sources of nitrogen, but showed no ability to grow on sources of organic nitrogen other than glutamine. In contrast, mycorrhizal seedlings grew well on a range of organic nitrogen sources. These observations indicate that mycorrhizal associations confer on species of Eucalyptus the ability to broaden their resource base substantially with respect to nitrogen. This ability to utilize organic nitrogen was not directly related to that of the fungal symbiont in isolation. Seedlings mycorrhizal with Pisolithus sp. were able to assimilate sources of nitrogen (in particular histidine and protein) on which the fungus in pure culture appeared to grow weakly. Experiments in which plants were fed 15N-labelled ammonium were undertaken in order to investigate the influence of mycorrhizal colonization on the pathway of nitrogen metabolism. In roots and shoots of all seedlings, 15N was incorporated into the amide group of glutamine, and label was also found in the amino groups of glutamine, glutamic acid, γ-aminobutyric acid and alanine. Mycorrhizal colonization appeared to have no effect on the assimilation pathway and metabolism of [15N]H4+; labelling data were consistent with the operation of the glutamate synthase cycle in plants infected with either Pisolithus sp. (which in isolation assimilates via the glutamate synthase cycle) or Elaphomyces sp. (which assimilates via glutamate dehydrogenase). It is likely that the control of carbon supply to the mycorrhizal fungus from the host may have a profound effect on both the assimilatory pathway and the range of nitrogen sources that can be utilized by the association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号