首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fractal and Markov behavior in ion channel kinetics   总被引:1,自引:0,他引:1  
Kinetic analysis of ion channel recordings attempts to distinguish the number and lifetimes of channel molecular states. Most kinetic analysis assumes that the lifetime of each state is independent of previous channel history, so that open and closed durations are Markov processes whose probability densities are sums of exponential decays. An alternative approach assumes that channel molecules have many configurtions with widely varying lifetimes. Rates of opening and closing then vary with the time scale of observation, leading to fractal kinetics. We have examined kinetic behavior in two types of channels from human and avian fibroblasts, using a maximum likehood method to test the dependence of rates on observational time scale. For both channels, openings showed mixed fractal and Markov behavior, while closings gave mainly fractal kinetics.  相似文献   

2.
The gating kinetics of a Ca2+-activated K+ channel from adult rat muscle plasma membrane are studied in artificial planar bilayers. Analysis of single-channel fluctuations distinguishes two Ca2+- and voltage-dependent processes: (a) short-lived channel closure (less than 1 ms) events appearing in a bursting pattern; (b) opening and closing events ranging from one to several hundred milliseconds in duration. The latter process is studied independently of the first and is denoted as the primary gating mode. At constant voltage, the mean open time of the primary gating mode is a linear function of the [Ca2+], whereas the mean closed time is a linear function of the reciprocal [Ca2+]. In the limits of zero and infinite [Ca2+], the mean open and the mean closed times are, respectively, independent of voltage. These results are predicted by a kinetic scheme consisting of the following reaction steps: (a) binding of Ca2+ to a closed state; (b) channel opening; (c) binding of a second Ca2+ ion. In this scheme, the two Ca2+ binding reactions are voltage dependent, whereas the open-closed transition is voltage independent. The kinetic constant derived for this scheme gives an accurate theoretical fit to the observed equilibrium open-state probability. The results provide evidence for a novel regulatory mechanism for the activity of an ion channel: modulation by voltage of the binding of an agonist molecule, in this case, Ca2+ ion.  相似文献   

3.
Properties of squid giant fiber lobe (GFL) Ca2+ channel deactivation (closing) were studied using whole-cell voltage clamp. Tail currents displayed biexponential decay, and fast and slow components of these tails exhibited similar external Ca(2+)- and voltage-dependence. Both components also shared similar inactivation properties. Increasing duration pulses to strongly depolarizing potentials caused a substantial slowing of the rate of deactivation for the fast component, and also led to an apparent conversion of fast tail currents to slow without an increase in total tail amplitude. A five-state kinetic model that computed the closing of channels differentially populating two open states could simulate the kinetic characteristics of GFL Ca2+ pulse and tail currents over a wide voltage range. The kinetics of the proposed state transition was very similar to the time course of relief of omega-Agatoxin IVA Ca2+ channel block with long pulses. A similar model predicted that the relief of block could occur via faster toxin dissociation from the second open state. Thus, GFL Ca2+ channels possess a unique form of voltage-dependent gating modification, in which maintained prior depolarization leads to a significant delay to channel closure at negative potentials. At the nerve terminal, amplified Ca2+ signals generated by such a mechanism might alter synaptic responses to repetitive stimulation.  相似文献   

4.
The interaction of biotin-binding proteins with biotinylated gramicidin (gA5XB) was studied by monitoring single-channel activity and sensitized photoinactivation kinetics. It was discovered that the addition of streptavidin or avidin to the bathing solutions of a bilayer lipid membrane (BLM) with incorporated gA5XB induced the opening of a channel characterized by approximately doubled single-channel conductance and extremely long open-state duration. We believe that the deceleration of the photoinactivation kinetics observed here with streptavidin and previously (Rokitskaya, T.I., Y.N. Antonenko, E.A. Kotova, A. Anastasiadis, and F. Separovic. 2000. Biochemistry. 39:13053-13058) with avidin reflects the formation of long-lived channels of this type. Both opening and closing of the double-conductance channels occurred via a transient sub-state of the conductance coinciding with that of the usual single-channel transition. The appearance of the double-conductance channels after the addition of streptavidin was preceded by bursts of fast fluctuations of the current with the open state duration of the individual events of 60 ms. The streptavidin-induced double-conductance channels appeared to be inherent only to the gramicidin analogue with a biotin group linked to the COOH terminus through a long linker arm. Including biotinylated phosphatidylethanolamine into the BLM prevented the formation of the double-conductance channels even with the excess streptavidin. In view of the results obtained here, it is suggested that the double-conductance channel represents a tandem of two neighboring gA5XB channels with their COOH termini being cross-linked by the bound streptavidin at both sides of the BLM. The finding that streptavidin induces the formation of the tandem gramicidin channel comprising two channels functioning in concert is considered to be relevant to the physiologically important phenomenon of ligand-induced receptor oligomerization.  相似文献   

5.
Linear Systems convolution analysis of muscle sodium currents was used to predict the opening rate of sodium channels as a function of time during voltage clamp pulses. If open sodium channel lifetimes are exponentially distributed, the channel opening rate corresponding to a sodium current obtained at any particular voltage, can be analytically obtained using a simple equation, given single channel information about the mean open-channel lifetime and current.Predictions of channel opening rate during voltage clamp pulses show that sodium channel inactivation arises coincident with a decline in channel opening rate.Sodium currents pharmacologically modified with Chloramine-T treatment so that they do not inactivate, show a predicted sustained channel opening rate.Large depolarizing voltage clamp pulses produce channel opening rate functions that resemble gating currents.The predicted channel opening rate functions are best described by kinetic models for Na channels which confer most of the charge movement to transitions between closed states.Comparisons of channel opening rate functions with gating currents suggests that there may be subtypes of Na channel with some contributing more charge movement per channel opening than others.Na channels open on average, only once during the transient period of Na activation and inactivation.After transiently opening during the activation period and then closing by entering the inactivated state, Na channels reopen if the voltage pulse is long enough and contribute to steady-state currents.The convolution model overestimates the opening rate of channels contributing to the steady-state currents that remain after the transient early Na current has subsided.  相似文献   

6.
The effects of external Zn+2 and other divalent cations on K channels in squid giant axons were studied. At low concentration (2 mM) Zn+2 slows opening kinetics without affecting closing kinetics. Higher concentrations (5-40 mM) progressively slow opening and speed channel closing to a lesser degree. In terms of "shifts," opening kinetics are strongly shifted to the right on the voltage axis, and off kinetics much less so. The shift of the conductance-voltage relation along the axis is intermediate. Zinc's kinetic effects show little sign of saturation at the highest concentration attainable. Zn does not alter the shape of the instantaneous current-voltage relation of open channels. Some other divalent cations have effects similar to Zn+2, Hg2+ being the most potent and Ca+2 the least. After treatment with Hg+2, which is irreversible, Zn+2 still slows opening kinetics, which suggests that each channel has at least two sites for divalent cation action. The results are not compatible with a simple theory of fixed, uniform surface charges. They suggest that external cations interact directly with a negatively charged element of the gating apparatus that moves inward from the membrane's outer surface during activation. Examination of normal kinetics shows that there is a slow step somewhere in the chain leading to channel opening. But the slowest step must not be the last one.  相似文献   

7.
8.
The kinetic characteristics of the opening and closing of the excitability-inducing material (EIM) channel in oxidized cholesterol and in brain lipid bilayers are compared. The kinetics of the opening and closing of individual ion-conducting channels in bilayers doped with small amounts of EIM are determined from discrete fluctuations in ionic current. The kinetics for approach to steady-state conductance are determined for lipid bilayers containing many channels. Steady-state and kinetic characteristics for the EIM channel incorporated in brain lipid bilayers can be accounted for by the model developed for the EIM channel incorporated in oxidized cholesterol membranes. Relaxation time, calculated from rate constants of single-channel membranes or directly measured in many-channel membranes is strongly temperature dependent, and is always shorter in brain lipid membranes. Changes in temperature do not affect the interaction of the electric field and the open channel, but the open configuration of the EIM channel in brain lipid bilayers is stablized with increasing temperature. The configurational energy difference between the open and closed channel, calculated from temperature studies, is larger in brain lipid bilayers. The energy barrier which separates the two configurations of the channel is larger in oxidized cholesterol bilayers.  相似文献   

9.
Kinetics of unliganded acetylcholine receptor channel gating.   总被引:9,自引:1,他引:9       下载免费PDF全文
Open- and closed-state lifetimes of unliganded acetylcholine receptor channel activity were analyzed by the method of likelihood maximazation. For both open times and closed times, the best-fitting density is most often a sum of two exponentials. These multiple open states cannot depend on the number of receptor binding sites occupied since they are observed in the absence of ligand. The rate of spontaneous opening and the faster decay constant of closing increased as the membrane was hyperpolarized. The voltage dependence of the rate of spontaneous opening is stronger than that for curare-liganded channels. Evidence that the acetylcholine receptor channel can open spontaneously in the absence of ligand has been presented previously (Sanchez et al, 1983; Brehm et al, 1984; Jackson, 1984). To add to this evidence, alpha-bungarotoxin was added to the patch electrode, causing the frequency of openings to decay with time. The rate constant determined from this decay is similar to rate constants reported for the binding of iodinated alpha-bungarotoxin to the acetylcholine receptor. The frequency of unliganded channel opening has been estimated as 2 X 10(-3) s-1 per receptor. A comparison of carbamylcholine-liganded and spontaneous gating transition rates suggests that ligand binding increases the rate of opening by a factor of 1.4 X 10(7). Carbamylcholine binding increases the mean open time by a factor of 5. Thus, a cholinergic agonist activates the acetylcholine receptor by destabilizing the closed state. The liganded and unliganded channel gating rates were used to analyze the energetics of ligand activation of the acetylcholine receptor channel, and to relate the open channel dissociation constant to the closed channel dissociation constant.  相似文献   

10.
The muscle nicotinic receptor (AChR) is a pentamer of four different subunits, each of which contains four transmembrane domains (M1-M4). We recently showed that channel opening and closing rates of the AChR depend on a hydrogen bond involving a threonine at position 14' of the M4 domain in the alpha-subunit. To determine whether residues in equivalent positions in non-alpha-subunits contribute to channel gating, we mutated deltaT14', betaT14', and epsilonS14' and evaluated changes in the kinetics of acetylcholine-activated currents. The mutation epsilonS14'A profoundly slows the rate of channel closing, an effect opposite to that produced by mutation of alphaT14'. Unlike mutations of alphaT14', epsilonS14'A does not affect the rate of channel opening. Mutations in deltaT14' and betaT14' do not affect channel opening or closing kinetics, showing that conserved residues are not functionally equivalent in all subunits. Whereas alphaT14'A and epsilonS14'A subunits contribute additively to the closing rate, they contribute nonadditively to the opening rate. Substitution of residues preserving the hydrogen bonding ability at position 14' produce nearly normal gating kinetics. Thus, we identify subunit-specific contributions to channel gating of equivalent residues in M4 and elucidate the underlying mechanistic and structural bases.  相似文献   

11.
The nicotinic receptor (AChR) is a pentamer of homologous subunits with an alpha(2)betaepsilondelta composition in adult muscle. Each subunit contains four transmembrane domains (M1-M4). Position 15' of the M1 domain is phenylalanine in alpha subunits while it is isoleucine in non-alpha subunits. Given this peculiar conservation pattern, we studied its contribution to muscle AChR activation by combining mutagenesis with single-channel kinetic analysis. AChRs containing the mutant alpha subunit (alphaF15'I) as well as those containing the reverse mutations in the non-alpha subunits (betaI15'F, deltaI15'F, and epsilonI15'F) show prolonged lifetimes of the diliganded open channel resulting from a slower closing rate with respect to wild-type AChRs. The kinetic changes are not equivalent among subunits, the beta subunit, being the one that produces the most significant stabilization of the open state. Kinetic analysis of betaI15'F of AChR channels activated by the low-efficacious agonist choline revealed a 10-fold decrease in the closing rate, a 2.5-fold increase in the opening rate, a 28-fold increase in the gating equilibrium constant in the diliganded receptor, and a significant increase opening in the absence of agonist. Mutations at betaI15' showed that the structural bases of its contribution to gating is complex. Rate-equilibrium linear free-energy relationships suggest an approximately 70% closed-state-like environment for the beta15' position at the transition state of gating. The overall results identify position 15' as a subunit-selective determinant of channel gating and add new experimental evidence that gives support to the involvement of the M1 domain in the operation of the channel gating apparatus.  相似文献   

12.
The role of calcium ions in the closing of K channels   总被引:15,自引:11,他引:4       下载免费PDF全文
The effects of external Ca ion on K channel properties were studied in squid giant axons. Increasing the Ca concentration from 20 to 100 mM slowed K channel opening, and was kinetically equivalent to decreasing the depolarizing step by approximately 25 mV. The same Ca increase had a much smaller effect on closing kinetics, equivalent to making the membrane potential more negative by approximately mV. With regard to the conductance-voltage curve, this Ca increase was about equivalent to decreasing the depolarizing step by approximately 10 mV. The presence of K or Rb in the bath slowed closing kinetics and made the time course more complex: there were pronounced slow components in Rb and, to a lesser extent, in K. Increasing the Ca concentration strongly antagonized the slowing caused by Rb or K. Thus, Ca has a strong effect on closing kinetics only in the presence of these monovalent cations. Rb and K do not significantly alter opening kinetics, nor do they alter Ca's ability to slow opening kinetics. High Ca slightly affects the instantaneous I-V curve by selectively depressing inward current at negative voltages. The results imply that Ca has two actions on K channels, and in only one, the action on closing, does it compete with monovalent cations. We propose (a) that opening kinetics are slowed by binding of Ca to negatively charged parts of the gating apparatus that are at the external surface of the channel protein when the channel is closed; monovalent cations do not compete effectively in this action; (b) Ca (or possibly Mg) normally occupies closed channels and has a latching effect. External K or Rb competes with Ca for channel occupancy. Channels close sluggishly when occupied by a monovalent cation and tend to reopen. Thus, slow closing results from occupancy by K or Rb instead of Ca. The data are well fit by a model based on these ideas.  相似文献   

13.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) plays a critical role in generation of complex Ca(2+) signals in many cell types. In patch clamp recordings of isolated nuclei from insect Sf9 cells, InsP(3)R channels were consistently detected with regulation by cytoplasmic InsP(3) and free Ca(2+) concentrations ([Ca(2+)](i)) very similar to that observed for vertebrate InsP(3)R. Long channel activity durations of the Sf9-InsP(3)R have now enabled identification of a novel aspect of InsP(3)R gating: modal gating. Using a novel algorithm to analyze channel modal gating kinetics, InsP(3)R gating can be separated into three distinct modes: a low activity mode, a fast kinetic mode, and a burst mode with channel open probability (P(o)) within each mode of 0.007 +/- 0.002, 0.24 +/- 0.03, and 0.85 +/- 0.02, respectively. Channels reside in each mode for long periods (tens of opening and closing events), and transitions between modes can be discerned with high resolution (within two channel opening and closing events). Remarkably, regulation of channel gating by [Ca(2+)](i) and [InsP(3)] does not substantially alter channel P(o) within a mode. Instead, [Ca(2+)](i) and [InsP(3)] affect overall channel P(o) primarily by changing the relative probability of the channel being in each mode, especially the high and low P(o) modes. This novel observation therefore reveals modal switching as the major mechanism of physiological regulation of InsP(3)R channel activity, with implications for the kinetics of Ca(2+) release events in cells.  相似文献   

14.
The fluorescence decay of chlorophyll in spinach thylakoids was measured as a function of the degree of closure of Photosystem II reaction centers, which was set for the flowed sample by varying either the preillumination by actinic light or the exposure of the sample to the exciting pulsed laser light. Three exponential kinetic components originating in Photosystem II were fitted to the decays; a fourth component arising from Photosystem I was determined to be negligible at the emission wavelength of 685 nm at which the fluorescence decays were measured. Both the lifetimes and the amplitudes of the components vary with reaction center closure. A fast (170–330 ps) component reflects the trapping kinetics of open Photosystem II reaction centers capable of reducing the plastoquinone pool; its amplitude decreases gradually with trap closure, which is incompatible with the concept of photosynthetic unit connectivity where excitation energy which encounters a closed trap can find a different, possibly open one. For a connected system, the amplitude of the fast fluorescence component is expected to remain constant. The slow component (1.7–3.0 ns) is virtually absent when the reaction centers are open, and its growth is attributable to the appearance of closed centers. The middle component (0.4–1.7 ns) with approximately constant amplitude may originate from centers that are not functionally linked to the plastoquinone pool. To explain the continuous increase in the lifetimes of all three components upon reaction center closure, we propose that the transmembrane electric field generated by photosynthetic turnover modulates the trapping kinetics in Photosystem II and thereby affects the excited state lifetime in the antenna in the trap-limited case.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - HEPES 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - PQ plastoquinone - PSI and PSII Photosystem I and II - QA and QB primary and secondary quinone acceptor of PSII  相似文献   

15.
Some CLC proteins function as passive Cl(-) ion channels whereas others are secondary active chloride/proton antiporters. Voltage-dependent gating of the model Torpedo channel ClC-0 is modulated by intracellular and extracellular pH, possibly reflecting a mechanistic relationship with the chloride/proton coupling of CLC antiporters. We used inside-out patch clamp measurements and mutagenesis to explore the dependence of the fast gating mechanism of ClC-0 on intracellular pH and to identify the putative intracellular proton acceptor(s). Among the tested residues (S123, K129, R133, K149, E166, F214L, S224, E226, V227, C229, R305, R312, C415, H472, F418, V419, P420, and Y512) only mutants of E166, F214, and F418 qualitatively changed the pH(int) dependence. No tested amino acid emerged as a valid candidate for being a pH sensor. A detailed kinetic analysis of the dependence of fast gate relaxations on pH(int) and [Cl(-)](int) provided quantitative constraints on possible mechanistic models of gating. In one particular model, a proton is generated by the dissociation of a water molecule in an intrapore chloride ion binding site. The proton is delivered to the side chain of E166 leading to the opening of the channel, while the hydroxyl ion is stabilized in the internal/central anion binding site. Deuterium isotope effects confirm that proton transfer is rate limiting for fast gate opening and that channel closure depends mostly on the concentration of OH(-) ions. The gating model is in natural agreement with the finding that only the closing rate constant, but not the opening rate constant, depends on pH(int) and [Cl(-)](int).  相似文献   

16.
The best-known Shaker allele of Drosophila with a novel gating phenotype, Sh(5), differs from the wild-type potassium channel by a point mutation in the fifth membrane-spanning segment (S5) (Gautam, M., and M.A. Tanouye. 1990. Neuron. 5:67-73; Lichtinghagen, R., M. Stocker, R. Wittka, G. Boheim, W. Stühmer, A. Ferrus, and O. Pongs. 1990. EMBO [Eur. Mol. Biol. Organ.] J. 9:4399-4407) and causes a decrease in the apparent voltage dependence of opening. A kinetic study of Sh(5) revealed that changes in the deactivation rate could account for the altered gating behavior (Zagotta, W.N., and R.W. Aldrich. 1990. J. Neurosci. 10:1799-1810), but the presence of intact fast inactivation precluded observation of the closing kinetics and steady state activation. We studied the Sh(5) mutation (F401I) in ShB channels in which fast N-type inactivation was removed, directly confirming this conclusion. Replacement of other phenylalanines in S5 did not result in substantial alterations in voltage-dependent gating. At position 401, valine and alanine substitutions, like F401I, produce currents with decreased apparent voltage dependence of the open probability and of the deactivation rates, as well as accelerated kinetics of opening and closing. A leucine residue is the exception among aliphatic mutants, with the F401L channels having a steep voltage dependence of opening and slow closing kinetics. The analysis of sigmoidal delay in channel opening, and of gating current kinetics, indicates that wild-type and F401L mutant channels possess a form of cooperativity in the gating mechanism that the F401A channels lack. The wild-type and F401L channels' entering the open state gives rise to slow decay of the OFF gating current. In F401A, rapid gating charge return persists after channels open, confirming that this mutation disrupts stabilization of the open state. We present a kinetic model that can account for these properties by postulating that the four subunits independently undergo two sequential voltage-sensitive transitions each, followed by a final concerted opening step. These channels differ primarily in the final concerted transition, which is biased in favor of the open state in F401L and the wild type, and in the opposite direction in F401A. These results are consistent with an activation scheme whereby bulky aromatic or aliphatic side chains at position 401 in S5 cooperatively stabilize the open state, possibly by interacting with residues in other helices.  相似文献   

17.
CLIC1 (NCC27) is an unusual, largely intracellular, ion channel that exists in both soluble and membrane-associated forms. The soluble recombinant protein can be expressed in Escherichia coli, a property that has made possible both detailed electrophysiological studies in lipid bilayers and an examination of the mechanism of membrane integration. Soluble E. coli-derived CLIC1 moves from solution into artificial bilayers and forms chloride-selective ion channels with essentially identical conductance, pharmacology, and opening and closing kinetics to those observed in CLIC1-transfected Chinese hamster ovary cells. The process of membrane integration of CLIC1 is pH-dependent. Following addition of protein to the trans solution, small conductance channels with slow kinetics (SCSK) appear in the bilayer. These SCSK modules then appear to undergo a transition to form a high conductance channel with fast kinetics. This has four times the conductance of the SCSK and fast kinetics that characterize the native channel. This suggests that the CLIC1 ion channel is likely to consist of a tetrameric assembly of subunits and indicates that despite its size and unusual properties, it is able to form a completely functional ion channel in the absence of any other ancillary proteins.  相似文献   

18.
Intracellular blockade by quaternary ammonium (QA) molecules of many potassium channels is state dependent, where the requirement for channel opening is evidenced by a time-dependent component of block in the macroscopic record. Whether this is the case for Ca(2+)- and voltage-activated potassium (BK) channels, however, remains unclear. Previous work (Li, W., and R.W. Aldrich. 2004. J. Gen. Physiol. 124:43-57) tentatively proposed a state-dependent, trapping model, but left open the possibility of state-independent block. Here, we found BK channel blockade by a novel QA derivative, bbTBA, was time dependent, raising the possibility of state-dependent, open channel block. Alternatively, the observed voltage dependence of block could be sufficient to explain time-dependent block. We have used steady-state and kinetic measurements of bbTBA blockade in order to discriminate between these two possibilities. bbTBA did not significantly slow deactivation kinetics at potentials between -200 and -100 mV, suggesting that channels can close unhindered by bound bbTBA. We further find no evidence that bbTBA is trapped inside BK channels after closing. Measurements of steady state fractional block at +40 mV revealed a 1.3-fold change in apparent affinity for a 33-fold change in P(o), in striking contrast to the 31-fold change predicted by state-dependent block. Finally, the appearance of a third kinetic component of bbTBA blockade at high concentrations is incompatible with state-dependent block. Our results suggest that access of intracellular bbTBA to the BK channel cavity is not strictly gated by channel opening and closing, and imply that the permeation gate for BK channels may not be intracellular.  相似文献   

19.
The gating kinetics of batrachotoxin-modified Na+ channels were studied in outside-out patches of axolemma from the squid giant axon by means of the cut-open axon technique. Single channel kinetics were characterized at different membrane voltages and temperatures. The probability of channel opening (Po) as a function of voltage was well described by a Boltzmann distribution with an equivalent number of gating particles of 3.58. The voltage at which the channel was open 50% of the time was a function of [Na+] and temperature. A decrease in the internal [Na+] induced a shift to the right of the Po vs. V curve, suggesting the presence of an integral negative fixed charge near the activation gate. An increase in temperature decreased Po, indicating a stabilization of the closed configuration of the channel and also a decrease in entropy upon channel opening. Probability density analysis of dwell times in the closed and open states of the channel at 0 degrees C revealed the presence of three closed and three open states. The slowest open kinetic component constituted only a small fraction of the total number of transitions and became negligible at voltages greater than -65 mV. Adjacent interval analysis showed that there is no correlation in the duration of successive open and closed events. Consistent with this analysis, maximum likelihood estimation of the rate constants for nine different single-channel models produced a preferred model (model 1) having a linear sequence of closed states and two open states emerging from the last closed state. The effect of temperature on the rate constants of model 1 was studied. An increase in temperature increased all rate constants; the shift in Po would be the result of an increase in the closing rates predominant over the change in the opening rates. The temperature study also provided the basis for building an energy diagram for the transitions between channel states.  相似文献   

20.
Li G  Pei W  Niu L 《Biochemistry》2003,42(42):12358-12366
AMPA receptors mediate fast excitatory neurotransmission in the central nervous system. GluR2 is an AMPA receptor subunit that controls some key heteromeric AMPA receptor properties, such as calcium permeability. The kinetic properties of GluR2, relevant to the time scale of its channel opening, however, are poorly understood. Here, to measure the channel-opening kinetics, we use a laser-pulse photolysis technique, which permits glutamate to be liberated photolytically from gamma-O-(alpha-carboxy-2-nitrobenzyl)glutamate (caged glutamate) with a time constant of approximately 30 micros. We show that GluR2Q(flip), an unedited and Ca(2+) permeable isoform, is by far the fastest ligand-gated channel with the channel-opening and -closing rate constants being (8.0 +/- 0.49) x 10(4) and (2.6 +/- 0.20) x 10(3) s(-1), respectively. Therefore, the shortest rise time (20-80% of the receptor current response) or the fastest observed time by which the GluR2Q(flip) channel can open is predicted to be 17 micros. The minimal kinetic mechanism for the channel opening is further consistent with the binding of two glutamate molecules with the channel-opening probability of 0.96. These results suggest that GluR2 is a temporally, highly efficient receptor to transduce the binding of chemical signals (i.e., glutamate) into an electrical impulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号