首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Nodulated (T202) and non-nodulated (T201) isolines of soybean (Glycine max [L.] Merr.) were cultivated in a rotated paddy field in Niigata, Japan. The pods, and seeds were harvested at 7-day intervals until maturity, and the subunit compositions of seed storage proteins were analyzed by SDS-PAGE. The β-subunit of β-conglycinin could scarcely be detected in the non-nodulated isoline, T201, at any period throughout seed development, although it was a major component in T202. The accumulation of α′- and α-subunits of β-conglycinin, together with the acidic and basic subunits of glycinin, appeared about one week later in seeds of T201 than in those of T202, perhaps due to a shortage of nitrogen and growth retardation. Northern hybridization could not detect the β-subunit mRNA in immature T201 seeds, while it was pronounced in T202. These results indicate that the suppression of the β-subunit in the non-nodulating isoline T201 is regulated at the level of mRNA accumulation. The α′(α)-subunit mRNAs were actively expressed in both isolines. Total nitrogen concentration was consistently lower in T201 than T202. No significant difference was observed in either the free amino acid or ureide concentrations in seeds, although the concentration of sucrose was considerably lower in T201 seeds and pods compared with T202. This result indicates the possibility that β-subunit accunmlation was regulated not only directly by total nitrogen concentration but also by carbohydrate concentrations. Nitrogen regulation of storage protein subunit levels of soybean seed were evaluated using T201 and T202. Greenhouse-grown plants were subjected to different levels and timing of nitrate treatments. The culture solution (2, 5 or 10 mM NO3–was supplied from flowering, 42 days after planting (DAP), until maturation (137 DAP), or switched from 2 to 10 mM, or from 10 to 2 mM at 61 DAP. With a continuous 2 mM NO3–treatment, seed dry weight and N concentration of the T201 plants were significantly lower than those in the T202 plants due to the lack of N2 fixation by the non nodulated T201 plants. However, when adequate NO3 was supplied, N concentration and dry weight were similar in T201 and T202 seeds. When 5 mM NO3 was supplied, the subunit proportion of the seed storage protein was similar in non-nodulating and nodulating isolines. On the other hand, when plants received a low level of NO3 (2 mM), the β-conglycinin proportion was lower in T201 than in T2O2. Furthermore, in the nodulating T202 plants treated with 10 mM NO3–the proportion of β-conglycinin increased markedly. The results indicate that non-nodulated T201 has a normal, non-defective, β-subunit gene and that limited N availability decreases accumulation of β-conglycinin, whereas high N availability increases the proportion of β-conglycinin in soybean seeds, irrespective of whether N was derived from N2 fixation or from NO3 absorption.  相似文献   

4.
The 7S seed storage protein (β-conglycinin) of soybean (Glycine max [L]. Merr.) has three major subunits; α, α′, and β. Accumulation of the β-subunit, but not the α- and α′-subunits, has been shown to be repressed by exogenously applied methionine to the immature cotyledon culture system (LP Holowach, JF Thompson, JT Madison [1984] Plant Physiol 74: 576-583) and to be enhanced under sulfate deficiency in soybean plants (KR Gayler, GE Sykes [1985] Plant Physiol 78: 582-585). Transgenic petunia (Petunia hybrida) harboring either the α′- or β-subunit gene were constructed to test whether the patterns of differential expression were retained in petunia. Petunia regulates these genes in a similar way as soybean in response to sulfur nutritional stimuli, i.e. (a) expression of the β-subunit gene is repressed by exogenous methionine in in vitro cultured seeds, whereas the α′-subunit gene expression is not affected; and (b) accumulation of the β-subunit is enhanced by sulfur deficiency. The pattern of accumulation of major seed storage protein of petunia was not affected by these treatments. These results indicate that this mechanism of gene regulation in response to sulfur nutrition is conserved in petunia even though it is not used to regulate its own major seed storage proteins.  相似文献   

5.
6.
The aggregation behavior as a function of pH was studied for hydrolysates obtained by hydrolysis of soy protein isolate (SPI) and glycinin- and β-conglycinin-rich protein fractions with subtilisin Carlsberg. The substrates were hydrolyzed up to degrees of hydrolysis (DH) of 2.2% and 6.5%. Compared with nonhydrolyzed SPI, a decrease in solubility was observed for the hydrolysates of SPI [0.8% (w/v) protein, I = 0.03 M] around neutral pH. At pH 8.0, glycinin hydrolysates had a much lower solubility (∼43% and 60%, respectively, for DH 2.2% and 6.5%) than SPI and β-conglycinin-derived hydrolysates, which were almost completely soluble. Peptides that aggregated were all larger than 5 kDa, and as estimated by size-exclusion chromatography their composition was almost independent of the aggregation pH. The solubility of hydrolysates of SPIs with a varying glycinin and β-conglycinin composition showed that glycinin-derived peptides are the driving force for the lower solubility of SPI hydrolysates. The solubility of SPI hydrolysates at pH 8.0 was shown not to be the sum of that of glycinin and β-conglycinin hydrolysates. Assuming that the separate hydrolysis of glycinin and β-conglycinin did not differ from that in the mixture (SPI), this indicates that β-conglycinin-derived peptides have the ability to inhibit glycinin-derived peptide aggregation.  相似文献   

7.
The regulation of cotyledon-specific gene expression by exogenously applied abscisic acid (ABA) was studied in developing cultured cotyledons of soybean (Glycine max L. Merr. cv Provar). When immature cotyledons were cultured in modified Thompson's medium, the addition of ABA resulted in an increased concentration of the β-subunit of β-conglycinin, one of the major storage proteins of soybean seeds. The amount of the α′-and α-subunits of β-conglycinin was relatively unaffected by the ABA treatment. When fluridone, an inhibitor of carotenoid biosynthesis that has been shown to decrease ABA levels in plant tissues, was added to the medium the level of ABA and the β-subunit decreased in the cotyledons. Increasing the concentration of sucrose in the culture medium caused an increase in the concentration of ABA and β-subunit in the cotyledons. When in vitro translation products from RNA isolated from cotyledons cultured with ABA were immunoprecipitated with antiserum against β-conglycinin, there was an increased amount of pre-β-subunit polypetide compared to the translation products from RNA isolated from control cotyledons. The pre-β-subunit polypeptide was not detected in translation products from RNA isolated from fluridone-treated cotyledons. Nucleic acid hybridization reactions showed that the level of β-subunit mRNA was higher in ABA-treated cotyledons compared to the control, and was lower in the fluridone-treated cotyledons. We have shown that exogenous ABA is able to modulate the accumulation of the β-subunit of β-conglycinin in developing cultured soybean cotyledons.  相似文献   

8.
The degradation of the major seed storage globulins of the soybean (Glycine max [L.] Merrill) was examined during the first 12 days of germination and seedling growth. The appearance of glycinin and β-conglycinin degradation products was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cotyledon extracts followed by electroblotting to nitrocellulose and immunostaining using glycinin and β-conglycinin specific antibodies. The three subunits of β-conglycinin were preferentially metabolized. Of the three subunits of β-conglycinin, the larger α and α′ subunits are rapidly degraded, generating new β-conglycinin cross-reactive polypeptides of 51,200 molecular weight soon after imbibition of the seed. After 6 days of growth the β-subunit is also hydrolyzed. At least six polypeptides, ranging from 33,100 to 24,000 molecular weight, appear as apparent degradation products of β-conglycinin. The metabolism of the glycinin acidic chains begins early in growth. The glycinin acidic chains present at day 3 have already been altered from the native form in the ungerminated seed, as evidenced by their higher mobility in an alkaline-urea polyacrylamide gel electrophoresis system. However, no change in the molecular weight of these chains is detectable by sodium dodecyl sulfate-polyarylamide gel electrophoresis. Examination of the glycinin polypeptide amino-termini by dansylation suggests that this initial modification of the acidic chains involves limited proteolysis at the carboxyl-termini, deamidation, or both. After 3 days of growth the acidic chains are rapidly hydrolyzed to a smaller (21,900 molecular weight) form. The basic polypeptides of glycinin appear to be unaltered during the first 8 days of growth, but are rapidly degraded thereafter to unidentified products. All of the original glycinin basic chains have been destroyed by day 10 of growth.  相似文献   

9.
The soybean cultivar Yumeminori, which lacks the α′- and α-subunits of β-conglycinin, carries both naturally occurring and induced mutations. While the cause of the natural mutation resulting in the α′-subunit deficiency has been determined, the induced mutation in the CG-2 gene encoding the α-subunit has not been characterized at the molecular level. In this study, we identified a four base pair insertion in the first exon of CG-2, which introduced a premature stop codon. The insertion co-segregated with the lack of α-subunit, indicating that this mutation is the cause of the α-subunit deficiency. A multiplex PCR method of testing for the presence or absence of α′- and α-subunits was developed based on the sequences of mutated and wild-type alleles. This PCR-based test was also capable of detecting the presence of wild-type genes when Yumeminori DNA samples were contaminated with wild-type DNA at levels of 0.2% or greater. Thus, this method will be useful both for marker-assisted selection in soybean breeding programs, and for seed purity tests in food industries.  相似文献   

10.
Somatic embryos of soybean [Glycine max (L.) Merrill] have been used to generate transgenic plants by particle bombardment. The induction and proliferation of somatic embryos from immature cotyledons are dependent on the genotype of the cultivar. Whereas somatic embryogenesis and plant regeneration are inefficient in most cultivars, they are efficient in the cultivar Jack. We previously established a breeding line, QF2, by the integration of null mutations of each subunit of the major seed storage proteins glycinin and β-conglycinin, but the embryogenic response of this line is insufficient to allow efficient transformation. We have now backcrossed QF2 to cultivar Jack in order to combine the null traits with competence for somatic embryogenesis. The backcrossed breeding lines selected on the basis of the absence of the major storage proteins exhibited an improved capacity for the induction and proliferation of somatic embryos compared with that of QF2. The induced somatic embryogenic tissue of these breeding lines was successfully used for the production of transgenic plants by particle bombardment. These results also indicate that somatic embryogenesis in soybean is genetically controlled and inherited in a manner independent of the null traits of the major seed storage proteins.  相似文献   

11.
Optimizing the amounts of proteins required to separate and characterize both abundant and less abundant proteins by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is critical for conducting proteomic research. In this study, we tested five different levels of soybean seed proteins (75, 100, 125, 150, and 200 μg) by 2D-PAGE. Following 2D-PAGE and spot excision, proteins were identified by mass spectrometry analysis. The number of visible protein spots was increased with an increase in the amount of protein loaded. The intensity of highly abundant proteins [β-conglycinin β-homotrimer and glycinin G4 (A5A4B3) precursors] increased linearly between 75 and 125 μg, whereas the proglycinin G3 (A1ab1b) homotrimer showed linearity between 75 and 150 μg. The spot intensity of less abundant proteins, glycinin G2 (A2b1a) precursor and proglycinin G3 (A1ab1b) homotrimer, increased linearly with an increase in the amount of protein through 200 μg, whereas spot intensity of β-conglycinin β-homotrimer and the allergen Gly m bd 28K increased linearly until 150 μg and did not increase further at 200 μg. These results suggest that 150 μg protein was a suitable amount for the separation of abundant proteins, and 200 μg protein was suitable for the separation of less abundant proteins prepared from soybean seeds. Mention of trade name, proprietary product or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture or imply its approval to the exclusion of other products or vendors that also may be suitable.  相似文献   

12.
Soybean seeds contain substantial amount of diverse triterpenoid saponins that influence the seed quality, although little is known about the physiologic functions of saponins in plants. We now describe the modification of saponin biosynthesis by RNA interference (RNAi)-mediated gene silencing targeted to β-amyrin synthase, a key enzyme in the synthesis of a common aglycon of soybean saponins. We identified two putative β-amyrin synthase genes in soybean that manifested distinct expression patterns with regard to developmental stage and tissue specificity. Given that one of these genes, GmBAS1, was expressed at a much higher level than the other (GmBAS2) in various tissues including the developing seeds, we constructed two RNAi vectors that encode self-complementary hairpin RNAs corresponding to the distinct regions of GmBAS1 under the control of a seed-specific promoter derived from the soybean gene for the α′ subunit of the seed storage protein β-conglycinin. These vectors were introduced independently into soybean. Six independent transgenic lines exhibited a stable reduction in seed saponin content, with the extent of saponin deficiency correlating with the β-amyrin synthase mRNA depletion. Although some transgenic lines produced seeds almost devoid of saponins, no abnormality in their growth was apparent and the antioxidant activity of their seeds was similar to that of control seeds. These results suggest that saponins are not required for seed development and survival, and that soybean seeds may therefore be amenable to the modification of triterpenoid saponin content and composition through molecular biologic approaches.  相似文献   

13.
The initial biochemical characterization of the soybean sucrose-binding protein, GmSBP, within our lab and others produced several incongruous characteristics that required a re-characterization of GmSBP via sequence homology, cell biology, immunolocalization, and semi-quantitative analysis. The GmSBP proteins share amino acid sequence homology as well as putative structural homology with globulin-like seed storage proteins. A comparison to the major soybean seed storage proteins, glycinin and -conglycinin established several storage protein-like characteristics for GmSBP. All three proteins were present in a prevacuolar compartment and protein storage vacuole. All three proteins increased in expression during seed development and are remobilized during germination. Quantitatively, the relative concentrations of GmSBP, -conglycinin (/ subunits), and glycinin (acidic subunits) indicated that GmSBP contributes 19-fold less to the stored nitrogen. The quantitative differences between GmSBP and glycinin may be attributed to the unconserved order and spacing of cis-acting regulatory elements present within the promoter regions. Ultimately, GmSBP is transported to the mature protein storage vacuole. The biological function of GmSBP within the protein storage vacuole remains uncertain, but its localization is a remnant of its evolutionary link to a globulin-like or vicilin-like ancestor that gave rise to the 7S family of storage proteins.  相似文献   

14.
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total proteins from soybean cotyledons and embryonic axes revealed the presence of similar storage proteins in both organs. Results from Western blot analysis conducted with antibodies raised against the purified #-subunit of #-conglycinin demonstrated accumulation of the #-subunit in embryonic axes. This accumulation followed a temporal pattern similar to that shown by the cotyledons. Axis #-conglycinin was broken down during the initial stage(s) of seed germination and was completely mobilized within 3 days after imbibition. Subcellular fractions were isolated from developing embryonic axes using metrizamide density gradients and analyzed by Western blots. Storage proteins were enriched in the lighter fractions of the gradient as well as with immunoglobulin heavy-chain binding protein. Electron microscopy of the storage-protein-enriched gradient fraction revealed small vesicles and protein aggregates. Protein A-gold immunocytochemistry was used to localize the occurrence of the #-subunit of #-conglycinin within the protein aggregates present in the metrizamide gradient and in the protein bodies present in mature embryonic axes.  相似文献   

15.
A cDNA encoding γ-tocopherol methyltransferase from Brassica napus (BnTMT) was overexpressed in soybean [Glycine max (L.) Merr.] under the control of seed-specific promoter of Arabidopsis fatty acid elongase 1 (FAE1) or soybean glycinin G1. Two and three transgenic plants were selected, respectively, after Agrobacterium-mediated transformation. Polymerase chain reaction (PCR) and Southern blots confirmed that BnTMT was single-copy integrated into the genome of transgenic plants. RT-PCR analysis showed that the expression of BnTMT was higher in the immature cotyledons than in the mature cotyledons, while no expression was detected in the leaves. Moreover, the expression level under the control of FAE1 was higher than that of G1. HPLC analysis indicated that the seed-specific expression of BnTMT resulted in 11.1-fold and 18.9-fold increase in α- and β-tocopherol content, respectively, in T2 seed. These results suggested that introducing BnTMT into soybean can be used to increase the vitamin E composition in seeds.  相似文献   

16.
Among the three subunits of [beta]-conglycinin, the 7S seed storage protein of soybean (Glycine max [L.] Merr.), expression of the [beta] subunit gene is unique. Accumulation of the [beta] subunit is enhanced in sulfate-deficient soybean plants, and its mRNA levels increase when abscisic acid (ABA) is added to the in vitro cotyledon culture medium. Transgenic Arabidopsis thaliana lines carrying a gene encoding the [beta] subunit was constructed and grown under sulfate deficiency. Accumulation of both [beta] subunit mRNA and protein were enhanced in developing A. thaliana seeds. Accumulation of one of the A. thaliana seed storage protein mRNAs was also enhanced by sulfate deficiency, although the response was weaker than that observed for the soybean [beta] subunit mRNA. When the aba1-1 or abi3-1 mutations were crossed into the transgenic A. thaliana line, accumulation of the [beta] subunit was significantly reduced, whereas accumulation of the A. thaliana seed storage protein was not greatly affected. These results indicate that soybean and A. thaliana share a common mechanism for response to sulfate deficiency and to ABA, although the sensitivity is different between the species. The transgenic A. thaliana carrying the [beta] subunit gene of [beta]-conglycinin will be a good system to analyze these responses.  相似文献   

17.
Soybean (Glycine max [L.] Merrill) lectin is a seed protein that accumulates in protein bodies of cotyledons during seed development. We have constructed two expression cassettes containing the 5′ and 3′ regions of the soybean lectin gene connected by aNot I restriction site. One vector also contains the 32 amino acid signal sequence. Using polymerase chain reaction (PCR), the coding region of the β-glucuronidase (uidA) gene was inserted into theNot I site of each vector. We tested the function of the expression cassettes in transformed embryogenic cultures of soybean. Development-specific GUS expression was observed in developing somatic embryos transformed with the chimeric lectin promoter-GUS constructs as determined by histochemical assays. Our data indicate that these cassettes could be used to drive expression of foreign genes to modify embryo-specific traits of soybean as protein quality or quantity in the seed.  相似文献   

18.
During the glyoxysomal β-oxidation of long-chain acyl-CoAs, short-chain intermediates accumulate transiently (Kleiter and Gerhardt 1998, Planta 206: 125–130). The studies reported here address the underlying factors. The studies concentrated upon the aspects of (i) chain length specificity and (ii) metabolic regulation of the glyoxysomal β-oxidation of sunflower (Helianthus annuus L.) cotyledons. (i) Concentration-rate curves of the β-oxidation of acyl-CoAs of various chain lengths showed that the β-oxidation activity towards long-chain acyl-CoAs was higher than that towards short-chain acyl-CoAs at substrate concentrations <20 μM. At substrate concentrations >20 μM, long-chain acyl-CoAs were β-oxidized more slowly than short-chain acyl-CoAs because the β-oxidation of long-chain acyl-CoAs is subject to substrate inhibition which had already started at 5–10 μM substrate concentration and results from an inhibition of the multifunctional protein (MFP) of the β-oxidation reaction sequence. However, low concentrations of free long-chain acyl-CoAs are rather likely to exist within the glyoxysomes due to the acyl-CoA-binding capacity of proteins. Consequently, the β-oxidation rate towards a parent long-chain acyl-CoA will prevail over that towards the short-chain intermediates. (ii) Low concentrations (≤5 μM) of a long-chain acyl-CoA exerted an inhibitory effect on the β-oxidation rate of butyryl-CoA. Reversibility of the inhibition was observed as well as metabolization of the inhibiting long-chain acyl-CoA. Regarding the activities of the individual β-oxidation enzymes towards their C4 substrates in the presence of a long-chain acyl-CoA, the MFP activity exhibited strong inhibition. This inhibition appears not to be due to the detergent-like physical properties of long-chain acyl-CoAs. The results of the studies, which are consistent with the observation that short-chain intermediates accumulate transiently during complete degradation of a long-chain acyl-CoA, suggest that the substrate concentration-dependent chain-length specificity of the β-oxidation and a metabolic regulation at the level of MFP are factors determining this transient accumulation. Received: 2 February 1999 / Accepted: 14 April 1999  相似文献   

19.
Soybean ( Glycine max [L.] Merr.) seeds are rich in protein, most of which is contributed by the major storage proteins glycinin (11S globulin) and beta-conglycinin (7S globulin). Null mutations for each of the subunits of these storage proteins were integrated by crossbreeding to yield a soybean line that lacks both glycinin and beta-conglycinin components. In spite of the absence of these two major storage proteins, the mutant line grew and reproduced normally, and the nitrogen content of its dry seed was similar to that for wild-type cultivars. However, protein bodies appeared underdeveloped in the cotyledons of the integrated mutant line. Furthermore, whereas free amino acids contribute only 0.3-0.8% of the seed nitrogen content of wild-type varieties, they constituted 4.5-8.2% of the seed nitrogen content in the integrated mutant line, with arginine (Arg) being especially enriched in the mutant seeds. Seeds of the integrated mutant line thus appeared to compensate for the reduced nitrogen content in the form of glycinin and beta-conglycinin by accumulating free amino acids as well as by increasing the expression of certain other seed proteins. These results indicate that soybean seeds are able to store nitrogen mostly in the form of either proteins or free amino acids.  相似文献   

20.
The effect of soy protein subunit composition on the acid-induced aggregation of soymilk was investigated by preparing soymilk from different soybean lines lacking specific glycinin and β-conglycinin subunits. Acid gelation was induced by glucono-δ-lactone (GDL) and analysis was done using diffusing wave spectroscopy and rheology. Aggregation occurred near pH 5.8 and the increase in radius corresponded to an increase in the elastic modulus measured by small deformation rheology. Diffusing wave spectroscopy was also employed to follow acid gelation, and data indicated that particle interactions start to occur at a higher pH than the pH of onset of gelation (corresponding to the start of the rapid increase in elastic modulus). The protein subunit composition significantly affected the development of structure during acidification. The onset of aggregation occurred at a higher pH for soymilk samples containing group IIb (the acidic subunit A3) of glycinin, than for samples prepared from Harovinton (a commercial variety containing all subunits) or from genotypes null in glycinin. The gels made from lines containing group I (A1, A2) and group IIb (A3) of glycinin resulted in stiffer acid gels compared to the lines containing only β-conglycinin. These results confirmed that the ratio of glycinin/β-conglycinin has a significant effect on gel structure, with an increase in glycinin causing an increase in gel stiffness. The type of glycinin subunits also affected the aggregation behavior of soymilk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号