首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A six-year study, starting in 1987, was focused on the frequency of embryonic lethals and chlorophyll mutations that arose in developing seeds of Arabidopsis thaliana growing at sites varying in the level of radioactive contamination in the 30-km control region of the Chernobyl Atomic Power Plant. The dose rate of chronic irradiation varied from 200 μR/h to 2.4 R/h. To study the genetic effects of various levels of radioactive contamination, the frequency of mutations arising in a particular generation was determined and the irradiation dose was estimated for the given generation. The dose dependence of the mutation frequency proved to follow a power function with a power less than unity, suggesting a relatively high effect for low-dose irradiation. Possible explanations of this phenomenon are discussed.  相似文献   

2.
During 6 years, starting from 1986, the monitoring of the dynamics of the frequency of embryo lethal and of chlorophyll mutations was carried out in arabidopsis populations in areas with different levels of radioactive contamination by the Muller embryo-test in the 30 km of ChNPP. The dose rate of chronic irradiation in the examined areas varied from 0.014 to 17 nA/Kg. Monitoring of the dynamics of the mutation process in natural arabidopsis populations showed the correlation between the level of the mutation process and the dose rate of chronic irradiation. The genetic effects of different levels of radioactive contamination were estimated by determining the frequency of mutations occurred in this generation and by calculating the dose of irradiation of one was found. That the dependence of the mutation frequency on the dose of irradiation presents a power function with a power index less 1, which suggests a higher efficiency of low radiation doses per unit dose. Possible explanations of this phenomenon are considered in the work. The studies of cytogenetic effects in chronically exposed Crepis tectorum populations in the zones of the Chernobyl accident showed that starting from the second year after the Chernobyl disaster there appeared plants with an altered karyotype and their frequency of chromosome aberrations correlates in root meristem cells.  相似文献   

3.
Genetic effects of irradiation in males of wild house mice which were caught in the region of Chernobyl Nuclear Power Station were studied. The dose rate on the ground surface varied from 0.04 to 200 mR/h of gamma-irradiation. The increasing yield of dominant lethal mutations was only observed in males from the most contaminated sector. Reciprocal translocations were observed in spermatocytes of mice at all the levels of contamination. The rate of reciprocal translocations was relatively low and increased linearly with the elevation of the dose rate. The extent of testis damages increased also, as the dose rate grew. The frequency of abnormal sperm heads, the yield of recessive lethal mutations, litter size and radiosensitivity of the first progeny were not changed, depending on the dose rate.  相似文献   

4.
Induction of cell killing and mutation to 6-thioguanine resistance was examined in a radiation-sensitive mutant strain LX830 of mouse leukemia cells following gamma irradiation at dose rates of 30 Gy/h (acute), 20 cGy/h (low dose rate), and 6.2 mGy/h (very low dose rate). LX830 cells were hypersensitive to killing by acute gamma rays. A slight but significant increase was observed in cell survival with decreasing dose rate down to 6.2 mGy/h, where the survival leveled off above certain total doses. The cells were also hypersensitive to mutation induction compared to the wild type. The mutation frequency increased linearly with increasing dose for all dose rates. No significant difference was observed in the frequency of induced mutations versus total dose at the three different dose rates so that the mutation frequency in LX830 cells at 6.2 mGy/h was not significantly different from that for moderate or acute irradiation.  相似文献   

5.
A high frequency of cells having chromosomal aberrations was shown to be preserved in the first generation of laboratory offspring of common voles, whose ancestors were captured near the East Ural radioactive track (EURT). In F2 and F3, a decrease in frequency was observed. Most likely, the cytogenetic effects observed were caused by environmental contamination with plutonium in the locality of capture. An increased chromosomal instability observed in the first laboratory generation of nonirradiated common voles was caused by reversible modifications in the expression of mutator genes inherited from parents exposed to alpha-irradiation rather than by classic mutations occurred in specific loci.  相似文献   

6.
Female CBA mice were chronically gamma-irradiated in utero during either of two periods, the 10th to 14th days or the 14th to 18th days of gestation. The doses administered were 34 rad/generation in the earlier group and 160 rad/generation in the latter with dose rates of 0.3 rad/h and 1.7 rad/h, respectively. The doses were given through 9 generations. The effect of the irradiation was expressed as an increased frequency in the rate of recessive lethal equivalents by just above 4%. This corresponds to a mutation rate of 1.5 X 10(-4) mutation/rad/genome in the animals irradiated during the 10th to 14th gestational days and 0.3 X 10(-4) mutation/rad/genome in the 14th to 18th day group. As in earlier investigations, neither dominant mutations nor dominance effects of induced recessive lethal equivalents were found.  相似文献   

7.
The compost worm Eisenia fetida is routinely used in ecotoxicological studies. A standard assay to assess genetic damage in this species would be extremely valuable. Since mitochondrial DNA (mtDNA) is known to exhibit an increased mutation rate following exposure to ionising radiation we assessed the validity of a mtDNA-based assay for measuring increases in mutation rate in laboratory-irradiated compost worms. To this end the mutation frequency in the mtDNA of the compost worm E. fetida was quantified following in vivo gamma-irradiation of adult worms in three dose groups. Five adult worms exposed to 1.4 mGy/h for 55 days (total dose 1.85 Gy), five adult worms exposed to 8.5 mGy/h for 55 days (total dose 11.22 Gy) and five adult control worms were used to assess the effect of irradiation on mtDNA mutation induction. DNA samples extracted from irradiated adult worms were used in high-fidelity PCR of a 486 bp region of mtDNA spanning the ATPase 8 gene, chosen for its high spontaneous mutation rate. PCR products were cloned and sequenced to identify mutations, with 89-102 clones successfully sequenced per individual. A significant elevation in mtDNA mutation frequency (p=0.032) was seen in worms exposed at the higher dose rate (8.5 mGy/h, total dose 11.22 Gy; mutation frequency 27.98+/-4.85 x 10(-5)mutations/bp) in comparison to controls (mutation frequency 12.68+/-3.06 x 10(-5)mutations/bp), but no elevation in mutation frequency (p=0.764) was seen for the lower dose rate (1.4 mGy/h, total dose 1.85 Gy; mutation frequency 13.74+/-1.29 x 10(-5)mutations/bp) compared with controls. This indicates that although the technique has the potential to detect an elevation in mutation frequency, it does not have sufficient sensitivity at the doses likely to be encountered in environmental monitoring scenarios.  相似文献   

8.
A study was made of the genetic effects of iodine radioactive isotopes in male germ cells of (CBA X C57Bl)F1 hybrid mice. After a single intraperitoneal administration of Na131I (1.48 to 740 kBq/g) or Na125I (148 to 7400 kBq/g) to males the occurrence of dominant lethal mutations (DLM), reciprocal translocations (RT), and abnormal sperm heads (ASH) was studied. The radioactive iodine isotopes induced DLM at the postmeiotic spermatogenesis stages only. After the effect of the isotopes, the frequency of RT increased insignificantly with dose. The frequency of ASH was only increased with the highest 131I dose. Relative biological effectiveness of 131I and 125I was less than 1 with a reference to the indices under study.  相似文献   

9.
The study was done to investigate the content of manmade radionuclides in aquatic organisms of the Yenisei River near the Mining-and-Chemical Combine (MCC) and to estimate the exposure dose rates to organisms from various sources. The results of the investigation and calculations suggest that the main source of radioactive contamination of aquatic organisms is the coolant of the third MCC reactor, which is still being released into the Yenisei. Gamma-spectrometric analysis revealed 23 manmade radionuclides in the biomass of aquatic plants. The aquatic animal Phylolimnogammarus viridis and diatoms also contain manmade radionuclides. Among aquatic organisms, the highest dose rate is received by aquatic plants (up to 39 microGy/day). For most aquatic organisms under study, the dose received from the technogenic irradiation is an order of magnitude higher than the dose received from natural irradiation. The water moss (Fontinalis antipyretica) features the highest capacity to accumulate manmade radionuclides; hence, it accumulates the largest technogenic exposure dose among the study aquatic organisms.  相似文献   

10.
Continuous gamma irradiation at decreasing dose rate was shown to be less effective than acute exposure with regard to the lethal effect and frequency of mutations of resistance to 6-thioguanine in cultured Chinese hamster cells. The cell population subjected to continuous irradiation was more radioresistant than the intact one. Lethal and genetic effects of continuous irradiation at decreasing dose rate were mainly determined by the contribution of the radiation dose received during the first 24 h of exposure.  相似文献   

11.
Synchronous Chinese hamster ovary cells were irradiated in G1 or S phase. Colony survival in Alpha MEM medium with dialyzed serum was determined with or without 15 mug/ml 8-azaguanine (AG). An expression period of over three generations (multiplicity of 20) was utilized, with expression times ranging from 58 to 114 h. Both G1 and S phase were practically identical in sensitivity to X-ray-induced mutations, with mutant frequency/viable cell/rad ranging from 1 X 10(-7) (75-100 rad) to 8 X 10(-7) (1000 rad). The spontaneous mutation rate, shown by Luria-Delbruck fluctuation analysis, was 5 X 10(-7) per generation. Thirty-three mutants, isolated at random and grown for over 30 generations in the absence of AG, were analyzed for plating efficiency (PE) in different concentrations of AG or in hypoxanthine-aminopterin-thymidine (HAT) medium. Of these, 64% were resistant (PE greater than 0.1) to 7.5 mug/ml AG, 85% to 5.0 mug/ml, and 91% to 3.5 mug/ml. Only 42% showed possible hypoxanthine-phosphoribosyltransferase (hprtase) deficiency as evidenced by HAT sensitivity (PE less than 0.1). Wild type controls exhibited PE's in 3.5 mug/ml AG of less than 0.001 and in HAT of greater than 0.5. Of ten mutants studied, all demonstrated survival response to radiation similar to wild type cells (D0 of approx. 120 rad). For radiation protection standards, the radiation dose required to induce mutations at a rate equal to that occurring spontaneously is called the doubling dose. The doubling dose observed for acute irradiation was about 3 rad and was estimated to be 10-60 rad for chronic irradiation, similar to that often reported for in vivo studies.  相似文献   

12.
The level of damage DNA in neyroblastes of larvae and frequency of recessive sex-linked lethal mutations of males from chronically irradiated populations Drosophila melanogaster, differing on mobile P-elements patterns, was estimated. Received results testify, that exposition in conditions a chronic gamma-radiation (absorbed radiation dose at one generation is compounds 10 mGy) result to increase of significance of parameters and change of sensitivity of cells to following of an acute irradiation in a dose of 3 Gy.  相似文献   

13.
Induction of cell killing and mutation to 6-thioguanine resistance was studied in growing mouse leukemia cells in culture following gamma rays at dose rates of 30 Gy/h, 20 cGy/h, and 6.3 mGy/h, i.e., acute, low dose rate, and very low dose rate irradiation. A marked increase was observed in the cell survival with decreasing dose rate; no reduction in the surviving fraction was detected after irradiation at 6.3 mGy/h until a total dose of 4 Gy. Similarly, the induced mutation frequency decreased after low dose rate irradiation compared to acute irradiation. However, the frequency after irradiation at 6.3 mGy/h was unexpectedly high and remained at a level which was intermediate between acute and low dose rate irradiation. No appreciable changes were observed in the responses to acute gamma rays (in terms of cell killing and mutation induction) in the cells which had experienced very low dose rate irradiation.  相似文献   

14.
The effect of Teniposide (VM-26) pretreatment was studied on the micronuclei induction in the bone marrow of mice exposed to 0, 0.5, 1, 2 and 3 Gy of gamma radiation at 12, 24 and 36 h post-irradiation. Administration of 0.05 mg/kg body weight of VM-26 to mice before irradiation resulted in the significant enhancement of micronucleated polychromatic erythrocytes (MPCE) at 12, 24 and 36 h post-irradiation. Highest elevation in the frequency of MPCE was observed in VM-26+irradiation group after exposure to 0.5 Gy when compared to concurrent DDW+irradiation group. This increase was two fold higher in VM-26+irradiation group at 12 and 24 h, while it was 3 fold higher at 36 h post-irradiation compared to DDW+irradiation group. The peak frequency of MPCE was observed at 24 h post-irradiation in both groups, which declined thereafter. The frequency of micronucleated normochromatic erythrocytes (MNCE) increased in a dose dependent manner in both DDW+irradiation and VM-26+irradiation groups. However, the frequency of MNCE was significantly higher in the latter when compared to the former group. The frequency of MNCE exhibited a continuous elevation up to 36 h post-irradiation in both DDW+irradiation and VM-26+irradiation groups. Treatment of mice with teniposide before irradiation resulted in a significant decline in the PCE/NCE ratio compared to DDW+irradiation group. The PCE/NCE ratio continued to decline up to 36 h post-irradiation in both the groups. The dose response for MPCE and PCE/NCE ratio was linear quadratic, while it was linear for MNCE.  相似文献   

15.
Geras’kin  S. A.  Vanina  J. C.  Dikarev  V. G.  Novikova  T. A.  Oudalova  A. A.  Spiridonov  S. I. 《Biophysics》2010,55(2):324-331
The method of isozyme analysis of megagametophytes is used to estimate the genetic variability in Scotch pine populations (Pinus sylvestris L.) of the Bryansk Region sites with contrasting levels of radioactive contamination (soil 137Cs, 60 to 17 800 Bq/kg) resulting from the Chernobyl accident. All indices of genetic variability (heterozygosity, frequency of polymorphic loci, Zhivotovskii index) and frequencies of loss-of-function enzyme mutations increase with the dose absorbed by plant generative organs. The data show that high mutability is intrinsic for seeds of these pine trees, and genetic diversity in the populations is essentially conditioned by radiation exposure.  相似文献   

16.
Cyclophosphamide is the most widely used antineoplastic agent. It is also used to condition patients for bone-marrow transplantations. Because of the general interest of this compound we initiated a systematic study of the induction of dominant-lethal and specific-locus mutations in male mice. In addition, we investigated the induction of specific-locus mutations by the combined treatment of cyclophosphamide and ionizing radiation.A dose of 40 mg/kg bw of cyclophosphamide caused dominant-lethal mutations in male mice only in the 1st and 2nd week after treatment. A dose of 120 mg/kg induced dominant-lethal mutations in the mating intervals 1–21 days posttreatment. No dominant lethal mutations were observed after the 3rd week. The same differential spermatogenic response was observed for the induction of specific-locus mutations. Cyclophosphamide induced recessive mutations exclusively in spermatozoa and spermatids. No mutations were recovered from treated spermatocytes and spermatogonia. In contrast to cyclophosphamide, radiation induces specific-locus mutations in all germ-cell stages.The pretreatment with cyclophosphamide 24 h before radiation enhanced the frequency of specific-locus mutations in spermatogonia. The distribution of the observed mutations among the 7 loci and their viability supports the hypothesis that these mutations were induced by radiation rather than by cyclophosphamide. The compound causes an immediate inhibition of DNA and RNA synthesis in spermatogonia. The inhibition very likely interferes with the repair process. The disturbance of the repair process is probably the cause of the synergistic effect for the induction of specific-locus mutations in spermatogonia of mice after pretreatment with cyclophosphamide 24 h before irradiation.  相似文献   

17.
A study was made of the effect of high radioactive contamination on the animal organism (C57BL/6 mice) and HeLa cell culture within the ten-kilometer zone of the Chernobyl A.P.S. accident. The total radiation dose, as calculated by a gamma-component, was 0.09 to 2 Gy. A long-term exposure of mice within the zone (cumulative dose of 1.8 to 2 Gy) caused a significant decrease in bone marrow stem potencies and changes in the brain vascular system; subsequent acute exposure of animals increased interferon titres in the serum to a much greater extent than a single acute exposure did. As to HeLa cells, irradiation there of with doses of 0.09 to 0.4 Gy during 15-20 postirradiation generations caused a decrease in the proliferative activity, an emergence of cells with micronuclei and of giant cells, and remote cell death.  相似文献   

18.
The review presents our research on the influence of novel thiourea compounds on the biological and genetic effect of gamma-rays using in vivo and in vitro systems of pea. Some novel disubstituted thioureas: o-allylthioureidobenzoic acid (ATB); o-phenylthioureidobenzoic acid (PTB); N-allyl-N'-2-pyridylthiourea (A-2-PTU); N-phenyl-N'-2-pyridylthiourea (P-2-PTU) and 1,4-allylthioureidosalicylic acid (ATUS) were examined. Pea (Pisum sativum L.) seeds from five varieties were used. Experiments in vivo and in vitro were carried under laboratory, greenhouse and field conditions. The data revealed the PTB radioprotective effect demonstrated by: reduction of chromosome aberrations by 2 folds; 50% increase of germinating and surviving plants in M1; twice higher frequency of induced mutations in M2 generation relative to irradiation without PTB treatment; decreasing the level of induced radiation suppression leading to favorable effect on the initial stem and root development of pea. ATB radioprotective effect was demonstrated in vitro by: 25-35% stimulation of organogenesis; by 20-50% increase in bud formation; by 25% stimulation of growth. The effect of A-2-PTU and P-2-PTU depended on the irradiation dose. The protective effect of A-2-PTU is more pronounced at lower irradiation dose, while the effect of P-2-PTU is more pronounced at higher irradiation dose. ATUS, opposite to the other compounds, revealed radiosensibilizing effect by: 16-27% increase in lethality caused by gamma-rays leading to lower number of germinating and surviving plants in M1; 50% decrease in the number of induced mutations in M2 generation; limiting the types of induced mutations at the higher irradiation dose. As a result of the experiments useful mutation forms were obtained, characterized with: earliness, lodging and disease resistance; higher productivity.  相似文献   

19.
Workers decommissioning the Fukushima-Daiichi nuclear power plant damaged from the Great East Japan Earthquake and resulting tsunami are at risk of injury with possible contamination from radioactive heavy atoms including actinides, such as plutonium. We propose a new methodology for on-site and rapid evaluation of heavy-atom contamination in wounds using a portable X-ray fluorescence (XRF) device. In the present study, stable lead was used as the model contaminant substitute for radioactive heavy atoms. First, the wound model was developed by placing a liquid blood phantom on an epoxy resin wound phantom contaminated with lead. Next, the correlation between the concentration of contaminant and the XRF peak intensity was formulated considering the thickness of blood exiting the wound. Methods to determine the minimum detection limit (MDL) of contaminants at any maximal equivalent dose to the wound by XRF measurement were also established. For example, in this system, at a maximal equivalent dose of 16.5 mSv to the wound and blood thickness of 0.5 mm, the MDL value for lead was 1.2 ppm (3.1 nmol). The radioactivity of 239Pu corresponding to 3.1 nmol is 1.7 kBq, which is lower than the radioactivity of 239Pu contaminating puncture wounds in previous severe accidents. In conclusion, the established methodology could be beneficial for future development of a method to evaluate plutonium contamination in wounds. Highlights: Methodology for evaluation of heavy-atom contamination in a wound was established. A portable X-ray fluorescence device enables on-site, rapid and direct evaluation. This method is expected to be used for evaluation of plutonium contamination in wounds.  相似文献   

20.
Ionizing radiation-induced dominant lethal mutations in all spermatogenic stages. After irradiation of male mice with 200 R the yield of induced mutations in early spermatids was twice the yield in spermatozoa, late spermatids, and spermatocytes. After irradiation with 400 R or 800 R the spermatocytes were the most sensitive stage for the induction of dominant lethal mutations. The frequency of radiation-induced dominant lethal mutations in postspermatogonial stages was dose-dependent. The yield of dominant lethal mutations in spermatogonia was independent of the dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号