首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The asymmetric (20S) acetylcholinesterase (AChE, EC 3.1.1.7) from 1-day-old chick muscle, purified on a column on which was immobilised a monoclonal antibody (mAb) to chick brain AChE, was used to immunise mice. Eight mAbs against the muscle enzyme were hence isolated and characterised. Five antibodies (4A8, 1C1, 10B7, 7G8, and 8H11) recognise a 110-kilodalton (kDa) subunit with AChE catalytic activity, one antibody (7D11) recognises a 72-kDa subunit with pseudocholinesterase or butyrylcholinesterase (BuChE, EC 3.1.1.8) catalytic activity, and two antibodies (6B6 and 7D7) react with the 58-kDa collagenous tail unit. Those three polypeptides can be recognised together in the 20S enzyme used, which is a hybrid AChE/BuChE oligomer. Antibodies 6B6 and 7D7 are specific for asymmetric AChE. Four of the mAbs recognising the 110-kDa subunit were reactive with it in immunoblots. Sucrose density gradient analysis of the antibody-enzyme complexes showed that the anti-110-kDa subunit mAbs cross-link multiple 20S AChE molecules to form large aggregates. In contrast, there is only a 2-3S increase in the sedimentation constant with the mAbs specific for the 72-kDa or for the 58-kDa subunit, suggesting that those subunits are more inaccessible in the structure to intermolecular cross-linking. The 4A8, 10B7, 7D11, and 7D7 mAbs showed cross-reactivity to the corresponding enzyme from quail muscle; however, none of the eight mAbs reacted with either enzyme type from mammalian muscle or from Torpedo electric organ. All eight antibodies showed immunocytochemical localisation of the AChE form at the neuromuscular junctions of chicken twitch muscles.  相似文献   

2.
3.
The monoclonal antibody (mAb) 2G8 (subclass IgG2a) raised against acetylcholinesterase (AChE, EC 3.1.1.7) from electric organ of Torpedo nacline timilei crossreacted with AChE from Torpedo marmorata, electric eel (Electrophorus electricus), flounder (Platichthys flesus) body muscle, rat brain, bovine brain, and human brain, this suggests that the epitope to which mAb 2G8 bound had been highly conserved during evolution. No crossreaction was found with AChE from human and bovine erythrocytes, nor with butyrylcholinesterase (BtChE, EC 3.1.1.8) from human serum. Binding of mAb 2G8 to the globular G2 form of AChE from T. marmorata strongly decreased enzyme activity, while no significant inhibition was found with either collagen-tailed, asymmetric forms, or with the enzymes from flounder body muscle or mammalian sources. The possibility that mAb 2G8 bound to anionic sites of AChE could be excluded since neither edrophonium chloride nor decamethonium bromide influenced the binding of 2G8 to the enzymes. Enzyme-linked immunosorbent assay and Western blot showed that heat-denatured, diisopropylfluorophosphate-treated, CNBr- and trypsin-digested AChE from T. marmorata still reacted with mAb 2G8; this indicates that the epitope to which 2G8 bound, at least partially, belonged to a continuous determinant. Treatment of cholinesterases with N-glycosidase F abolished crossreaction with 2G8, showing that an essential part of the epitope consisted of N-linked carbohydrates.  相似文献   

4.
Monoclonal antibodies (mAbs) to chick choline acetyltransferase (ChAT) were obtained from mouse-hybridoma cultures after immunization with partially purified enzyme isolated from optic lobes. Antibodies that bound active enzyme were detected in 11 hybridoma cultures. The mAbs showed cross-reactivity to ChAT from quail and beef but not to ChAT from several other species. An affinity column prepared with one of the mAbs was used to purify ChAT to apparent homogeneity. Polyclonal antiserum to mAb affinity-purified ChAT was produced in a rabbit. This antiserum inhibited chick ChAT activity and quantitatively precipitated ChAT activity from solution. On immunoblots, the antiserum stained ChAT and two other proteins. After preadsorption of the antiserum with effluent from the mAb affinity column, the antiserum became monospecific for ChAT. This antiserum was useful for immunocytochemical localization of ChAT, it selectively stained neuronal cell bodies in chick spinal cord and rat brain at locations known to contain cholinergic neurons.  相似文献   

5.
The major molecular form of acetylcholinesterase (AChE) from chicken brain is a membrane-bound glycoprotein with an apparent sedimentation coefficient of 11.4 S. Analysis of the purified protein by gel filtration, velocity sedimentation, and sodium dodecyl sulfate-gel electrophoresis shows that the solubilized enzyme is a globular tetramer with an apparent Mr = 420,000. This membrane-bound form of AChE is hydrophobic and readily aggregates in the absence of detergent. These aggregates are concentration-dependent, relatively stable in the presence of high salt concentrations, yet readily dissociate upon addition of detergent to the 11.4 S form, indicating that the interactions are hydrophobic. Polyclonal and monoclonal antibodies raised against chicken brain AChE purified by ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis precipitate AChE enzyme activity. However, these antibodies do not cross-react with the enzyme from chicken muscle which preferentially hydrolyses butyrylcholine. Immunoprecipitation of isotopically labeled enzyme molecules from tissue cultured brain cells and analysis by sodium dodecyl sulfate-gel electrophoresis shows that AChE consists of two polypeptide chains with apparent Mr = 105,000 (alpha) and 100,000 (beta) in a 1:1 ratio. Immunoblotting of brain AChE with either the polyclonal or monoclonal antibodies indicates that the alpha and beta chains share antigenic determinants. Furthermore, both polypeptide chains can be labeled with [3H]diisopropyl fluorophosphate, indicating that they each contain a catalytic site. This is the first indication that globular forms of AChE may consist of multiple polypeptide chains.  相似文献   

6.
STUDIES ON ACETYLCHOLINESTERASE OF RAT BRAIN SYNAPTOSOMAL PLASMA MEMBRANES   总被引:3,自引:1,他引:2  
Abstract— A fluorimetric assay has been used to examine some kinetic properties of AChE from synaptosomal plasma membranes prepared from rat brain. The AChE bound to the plasma membranes was compared to that solubilized with Triton X-100 and found to be essentially the same with respect to Michaelis constant and inhibitor constants for several AChE inhibitors. The two forms of the enzyme had slightly different pH optima. The kinetic studies revealed no evidence that synaptosomal plasma membrane AChE has allosteric properties. The solubilized enzyme was further purified by affinity chromatography.  相似文献   

7.
Monoclonal antibodies (mAbs) have been made against each of the five subunits of ECF1 (alpha, beta, gamma, delta, and epsilon), and these have been used in topology studies and for examination of the role of individual subunits in the functioning of the enzyme. All of the mAbs obtained reacted with ECF1, while several failed to react with ECF1F0, including three mAbs against the gamma subunit (gamma II, gamma III, and gamma IV), one mAb against delta, and two mAbs against epsilon (epsilon I and epsilon II). These topology data are consistent with the gamma, delta, and epsilon subunits being located at the interface between the F1 and F0 parts of the complex. Two forms of ECF1 were used to study the effects of mAbs on the ATPase activity of the enzyme: ECF1 with the epsilon subunit tightly bound and acting to inhibit activity and ECF1* in which the delta and epsilon subunits had been removed by organic solvent treatment. ECF1* had an ATPase activity under standard conditions of 93 mumol of ATP hydrolyzed min-1 mg-1, cf. an activity of 7.5 units mg-1 for our standard ECF1 preparation and 64 units mg-1 for enzyme in which the epsilon subunit had been removed by trypsin treatment. The protease digestion of ECF1* reduced activity to 64 units mg-1 in a complicated process involving an inhibition of activity by cleavage of the alpha subunit, activation by cleavage of gamma, and inhibition with cleavage of the beta subunit. mAbs to the gamma subunit, gamma II and gamma III, activated ECF1 by 4.4- and 2.4-fold, respectively, by changing the affinity of the enzyme for the epsilon subunit, as evidenced by density gradient centrifugation experiments. The gamma-subunit mAbs did not alter the ATPase activity of ECF1*- or trypsin-treated enzyme. The alpha-subunit mAb (alpha I) activated ECF1 by a factor of 2.5-fold and ECF1F0 by 1.3-fold, but inhibited the ATPase activity of ECF1* by 30%.  相似文献   

8.
Eleven unique monoclonal IgG antibodies were raised against rabbit brain acetylcholinesterase (AChE, EC 3.1.1.7), purified to electrophoretic homogeneity by a two-step procedure involving immunoaffinity chromatography. The apparent dissociation constants of these antibodies for rabbit AChE ranged from about 10 nM to more than 100 nM (assuming one binding site per catalytic subunit). Species cross-reactivity was investigated with crude brain extracts from rabbit, rat, mouse cat, guinea pig, and human. One antibody bound rabbit AChE exclusively; most bound AChE from three or four species; two bound enzyme from all species tested. Identical, moderate affinity for rat and mouse brain AChE was displayed by two antibodies; two others were able to distinguish between these similar antigens. Nine of the antibodies had lowered affinity for AChE in the presence of 1 M NaCl, but two were salt resistant. Analysis of mutual interferences in AChE binding suggested that certain of the antibodies were competing for nearby epitopes on the AChE surface. One antibody was a potent AChE inhibitor (IC50 = 10(-8) M), blocking up to 90% of the enzyme activity. Most of the antibodies were less able to bind the readily soluble AChE of detergent-free brain extracts than the AChE which required detergent for solubilization. The extreme case, an antibody that was unable to recognize nearly half of the "soluble" AChE, was suspected of lacking affinity for the hydrophilic enzyme form.  相似文献   

9.
The recognition reactions between a synthetic disaccharide alpha-Kdo-(2-->4)-alpha-Kdo-(2-->O)-allyl and two monoclonal antibodies (mAbs) were studied by NMR, yielding two distinct bound conformations of the carbohydrate ligand. One mAb, S23-24, recognizes the disaccharides alpha-Kdo-(2-->4)-alpha-Kdo-(2-->O)-allyl and alpha-Kdo-(2-->8)-alpha-Kdo-(2-->O)-allyl with similar affinities, whereas mAb S25-2 binds to the disaccharide alpha-Kdo-(2-->8)-alpha-Kdo-(2-->O)-allyl with an approximately 10-fold higher affinity than to the disaccharide alpha-Kdo-(2-->4)-alpha-Kdo-(2-->O)-allyl. Compared to S25-2, S23-24 binds to alpha-Kdo-(2-->4)-alpha-Kdo-(2-->O)-allyl with an approximately 50-fold increased affinity. We used NMR experiments that are based on the transferred NOE effect, specifically, trNOESY, trROESY, QUIET-trNOESY, and MINSY experiments, to show that the (2-->8)-specific mAb, S25-2, stabilizes a conformation of the alpha-(2-->4)-linked disaccharide that is not highly populated in solution. S23-24 recognizes two conformations of alpha-Kdo-(2-->4)-alpha-Kdo-(2-->O)-allyl, one that is highly populated in aqueous solution and another conformation that is similar to the one bound by S25-2. This is the first example where it is experimentally shown that a carbohydrate ligand may adopt different bioactive conformations upon interaction with mAbs with different fine specificities. Our NMR studies indicate that a careful examination of spin diffusion is critical for the analysis of bioactive conformations of carbohydrate ligands.  相似文献   

10.
—Approximately 70 per cent of the total AChE of bovine brain tissue was solubilized by repeated homogenization and centrifugation in 0.32 m sucrose containing EDTA. After ammonium sulphate fractionation, application of the enzyme preparation to an agarose affinity gel column effected a 700-fold purification. Subsequent molecular filtration separated three active forms of AChE with molecular weights of 130,000, 270,000 and 390,000 with an average specific activity of 575 mmol of acetylthiocholine hydrolysed/mg of protein/h. The complete procedure represented an approximate 23,000-fold purification of the enzyme from that in the original tissue homogenate. The three forms of AChE exhibited certain differences in properties, including apparent Km values, pH optima and sensitivity to inhibitory agents. Ancillary studies on less purified enzyme preparations by use of polyacrylamide gel electrophoresis and isoelectric focusing techniques also suggested that brain AChE exists in multiple forms.  相似文献   

11.
Chicken muscle and retina, and rat muscle asymmetric acetylcholinesterase (AChE) species were bound to immobilized heparin at 0.4 M NaCl. Binding efficiency was between 50 and 80% for crude fraction I A-forms (AI; muscle), and nearly 100% for fraction II A-forms (AII; muscle and retina). Antibody-affinity-purified AI-forms (chicken) were, however, quantitatively bound to heparin-agarose gels, whereas diisopropylfluorophosphate-inactivated high-salt extracts partially prevented the binding of both AI and AII AChE forms, thus suggesting the presence in crude AI extracts of heparin-like molecules interfering with the tail-heparin interaction. All bound A-forms were progressively displaced from the heparin-agarose columns by increasing salt concentrations, with maximal release at about 0.6 M. They were also efficiently eluted by heparin solutions (1 mg/ml), other glycosaminoglycans being much less effective. Chicken globular AChE forms (G-forms, both low-salt-soluble and detergent-soluble) also bound to immobilized heparin in the absence of salt. Stepwise elution with increasing NaCl concentrations showed maximal release of G-forms at 0.15 M, all globular forms being totally displaced from the column at 0.4 M NaCl. Heparin (1 mg/ml) had the same eluting capacity as 0.4 M NaCl, whereas other glycosaminoglycans were only marginally effective. We conclude that the molecular forms of AChE in these vertebrate species interact with heparin, at salt concentrations that are characteristic for asymmetric and globular forms. Within the A and G molecular form groups, no differences were found in the behavior of the different fractions or subtypes, provided that the enzyme samples were free of interfering molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Differences in the glycosylation of acetylcholinesterase (AChE) subunits which form the dimers of mouse erythrocyte and a suitable procedure to purify the enzyme by affinity chromatography in edrophonium-Sepharose are described. AChE was extracted ( approximately 80%) from erythrocytes with Triton X-100 and sedimentation analyses showed the existence of amphiphilic AChE dimers in the extract. The AChE dimers were converted into monomers by reducing the disulfide bond which links the enzyme subunits. Lectin interaction studies revealed that most of the dimers were bound by concanavalin A (Con A) (90-95%), Lens culinaris agglutinin (LCA) (90-95%), and wheat germ (Triticum vulgaris) agglutinin (WGA) (70-75%), and a small fraction by Ricinus communis agglutinin (RCA(120)) (25-30%). The lower level of binding of the AChE monomers with WGA (55-60%), and especially with RCA (10-15%), with respect to the dimers, reflected heterogeneity in the sugar composition of the glycans linked to each AChE subunit in dimers. Forty per cent of the amphiphilic AChE dimers lost the glycosylphosphatidylinositol (GPI) and, therefore, were converted into hydrophilic forms, by incubation with phosphatidylinositol-specific phospholipase C (PIPLC), which permitted their separation from the amphiphilic variants in octyl-Sepharose. Only the hydrophilic dimers, either isolated or mixed with the amphiphilic forms, were bound by edrophonium-Sepharose, which allowed their purification (4800-fold) with a specific activity of 7700 U/mg protein. The identification of a single protein band of 66 kDa in gel electrophoresis demonstrates that the procedure can be used for the purification of GPI-anchored AChE, providing that the attached glycolipid domain is susceptible to PIPLC.  相似文献   

13.
Evaluation of the immunogenicity of panitumumab, a fully human anti-epidermal growth factor receptor mAb approved for use in colorectal cancer patients, led to the development of two separate immunoassays for the detection of anti-panitumumab Abs. The first immunoassay used a bridging ELISA capable of detecting 10 ng/ml positive control anti-panitumumab Ab. The ELISA incorporated an acid dissociation step to reduce drug interference and tolerated the presence of approximately 100-fold molar excess of drug. During eight clinical trials, the ELISA detected developing Ab responses in 2 of 612 (0.3%) subjects. In one of the ELISA positive subjects, neutralizing Abs were detected using an epidermal growth factor receptor phosphorylation bioassay. The second immunoassay used a Biacore biosensor immunoassay format capable of detecting 1 mug/ml positive control Ab while tolerating the presence of equal molar amounts of drug. Although less sensitive and less tolerant to competing drug in the assay, the Biacore assay detected developing Ab responses in 25 of the 604 (4.1%) subjects. Additionally, the Biacore assay identified eight subjects who developed neutralizing Abs. Mouse mAbs with affinities ranging from 1.1 x 10(-6) to 8.4 x 10(-10) M were used to characterize both assay types. The ELISA was more sensitive for the detection of higher affinity mAbs and detected high-affinity mAbs in the presence of higher molar ratio of drug to mAb. The Biacore assay was more sensitive for detection of lower affinity mAbs and detected low affinity Abs in the presence of higher molar ratios of drug to mAb.  相似文献   

14.
Quantitation of individual monoclonal antibodies (mAbs) within a combined antibody drug product is required for preclinical and clinical drug development. We have developed two antitoxins, XOMA 3B and XOMA 3E, each consisting of three mAbs that neutralize type B and type E botulinum neurotoxin (BoNT/B and BoNT/E) to treat serotype B and E botulism. To develop mAb-specific binding assays for each antitoxin, we mapped the epitopes of the six mAbs. Each mAb bound an epitope on either the BoNT light chain (LC) or translocation domain (HN). Epitope mapping data were used to design LC-HN domains with orthogonal mutations to make them specific for only one mAb in either XOMA 3B or XOMA 3E. Mutant LC-HN domains were cloned, expressed, and purified from Escherichia coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. Further engineering of domains allowed construction of enzyme-linked immunosorbent assays (ELISAs) that could characterize the integrity, binding affinity, and identity of each of the six mAbs in XOMA 3B and 3E without interference from the three BoNT/A mAbs in XOMA 3AB. Such antigen engineering is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that bind the same protein.  相似文献   

15.
Monoclonal antibodies (mAbs) are a growing segment of therapeutics, yet their in vitro characterization remains challenging. While it is essential that a therapeutic mAb recognizes the native, physiologically occurring epitope, the generation and selection of mAbs often rely on the use of purified recombinant versions of the antigen that may display non-native epitopes. Here, we present a method to measure both, the binding affinity of a therapeutic mAb towards its native unpurified antigen in human serum, and the antigen’s endogenous concentration, by combining the kinetic exclusion assay and Biacore’s calibration free concentration analysis. To illustrate the broad utility of our method, we studied a panel of mAbs raised against three disparate soluble antigens that are abundant in the serum of healthy donors: proprotein convertase subtilisin/kexin type 9 (PCSK9), progranulin (PGRN), and fatty acid binding protein (FABP4). We also determined the affinity of each mAb towards its purified recombinant antigen and assessed whether the interactions were pH-dependent. Of the six mAbs studied, three did not appear to discriminate between the serum and recombinant forms of the antigen; one mAb bound serum antigen with a higher affinity than recombinant antigen; and two mAbs displayed a different affinity for serum antigen that could be explained by a pH-dependent interaction. Our results highlight the importance of taking pH into account when measuring the affinities of mAbs towards their serum antigens, since the pH of serum samples becomes increasingly alkaline upon aerobic handling.  相似文献   

16.
We have purified and generated antisera to a 95 kDa skeletal muscle protein that constitutes the largest mass fraction of gelatin-agarose binding proteins in skeletal muscle. Preliminary results indicated that this 95 kDa chicken skeletal muscle protein bound strongly to gelatin-agarose and type IV collagen-agarose, suggesting a possible function in muscle cell adhesion to collagen. However, N-terminal sequencing of proteolytic fragments of the 95 kDa protein indicates that it is the chicken skeletal muscle form of glycogen phosphorylase, the binding of which to gelatin-agarose is unlikely to be biologically relevant. Further characterization showed that the skeletal muscle form of glycogen phosphorylase is immunologically distinct from the liver and brain forms in the chicken, and suggests that, unlike mammalian skeletal muscle, chicken skeletal muscle may have two phosphorylase isoforms. Furthermore, immunolocalization data and solubility characteristics of glycogen phosphorylase in muscle extraction experiments suggest the enzyme may interact strongly with an unidentified component of the muscle cytoskeleton. Thus, this study yields a novel purification technique for skeletal muscle glycogen phosphorylase, provides new information on the distribution and isoforms of glycogen phosphorylase, and provides a caveat for using gelatin affinity chromatography as a primary step in purifying collagen-binding proteins from skeletal muscle.  相似文献   

17.
Studies are in progress to characterize the nature of ligand interactions at peripheral anionic sites on mammalian brain AChE, including the beta-anionic or "accelerator" anionic sites where enzyme activity is increased upon Ca2+ binding. Terbium was studied as a fluorescence probe of Ca2+ binding sites in partially purified AChE from whole rat brain. Scatchard analysis of Tb3+ binding in low ionic strength (2 mM) Pipes buffer revealed at least two populations of sites: high affinity sites with Kd(app) approximately 7.6 microM and low-affinity sites with a Kd(app) approximately 49.6 microM. Low-affinity binding was selectively inhibited by 50 mM NaCl; high-affinity binding was completely inhibited by 2 mM CaCl2; and all the bound Tb3+ could be displaced by 1 mM EDTA. The heterogeneity of Tb3+ binding sites is consistent with the multiple, concentration-dependent effects of Tb3+ on enzyme activity.  相似文献   

18.
《The Journal of cell biology》1989,109(6):3477-3491
To examine the ultrastructural distribution of laminin within kidney basement membranes, we prepared rat anti-mouse laminin mAbs to use in immunolocalization experiments. Epitope domains for these mAbs were established by immunoprecipitation, immunoblotting, affinity chromatography, and rotary shadow EM. One mAb bound to the laminin A and B chains on blots and was located to a site approximately 15 nm from the long arm-terminal globular domain as shown by rotary shadowing. Conjugates of this long arm-specific mAb were coupled to horseradish peroxidase (HRP) and intravenously injected into mice. Kidney cortices were fixed for microscopy 3 h after injection. HRP reaction product was localized irregularly within the renal glomerular basement membrane (GBM) and throughout mesangial matrices. In addition, this mAb bound in linear patterns specifically to the laminae rarae of basement membranes of Bowman's capsule and proximal tubule. This indicates the presence of the long arm immediately beneath epithelial cells in these sites. The laminae densae of these basement membranes were negative by this protocol. In contrast, the lamina rara and densa of distal tubular basement membranes (TBM) were both heavily labeled with this mAb. A different ultrastructural binding pattern was seen with eight other mAbs, including two that mapped to different sites on the short arms by rotary shadowing and five that blotted to a large pepsin-resistant laminin fragment (P1). These latter mAbs bound weakly or not at all to GBM but all bound throughout mesangial matrices. In contrast, discrete spots of HRP reaction product were seen across all layers of Bowman's capsule BM and proximal TBM. These same mAbs, however, bound densely across the full width of distal TBM. Our findings therefore show that separate strata of different basement membranes are variably immunoreactive to these laminin mAbs. The molecular orientation or integration of laminin into the three dimensional BM meshwork therefore varies with location. Alternatively, there may be a family of distinct laminin-like molecules distributed within basement membranes.  相似文献   

19.
Abstract: Different forms of acetylcholinesterase (AChE), EC 3.1.1.7, were demonstrated in human brain caudate nucleus. One form was solubilized at high ionic strength, the other with Triton X-100. The detergent-extractable form was purified to homogeneity by affinity chromatography. This form of AChE is amphiphile-dependent; i.e., it was active only in the presence of amphiphiles (detergents or lipids). Further, the enzyme was shown to bind detergents and to interact hydrophobically with Phenyl-Sepharose. In the presence of detergents the enzyme is a tetramer (subunit molecular weight, 78,000) which aggregates on the removal of detergents. Human brain AChE showed a reaction of identity with human erythrocyte AChE in crossed-line immunoelectrophoresis. The high-salt-soluble brain enzyme did not cross-react with the erythrocyte enzyme. The two classes of AChE seem not to be related, as they show no common antigenic determinant.  相似文献   

20.
Sperm-egg plasma membrane fusion during fertilization was studied using guinea pig gametes and mAbs to sperm surface antigens. The mAb, PH-30, strongly inhibited sperm-egg fusion in a concentration-dependent fashion. When zona-free eggs were inseminated with acrosome-reacted sperm preincubated in saturating (140 micrograms/ml) PH-30 mAb, the percent of eggs showing fusion was reduced 75%. The average number of sperm fused per egg was also reduced by 75%. In contrast a control mAb, PH-1, preincubated with sperm at 400 micrograms/ml, caused no inhibition. The PH-30 and PH-1 mAbs apparently recognize the same antigen but bind to two different determinants. Both mAbs immunoprecipitated the same two 125I-labeled polypeptides with Mr 60,000 (60 kD) and Mr 44,000 (44 kD). Boiling a detergent extract of sperm severely reduced the binding of PH-30 but had essentially no effect on the binding of PH-1, indicating that the two mAbs recognize different epitopes. Immunoelectron microscopy revealed that PH-30 mAb binding was restricted to the sperm posterior head surface and was absent from the equatorial region. The PH-30 and PH-1 mAbs did not bind to sperm from the testis, the caput, or the corpus epididymis. PH-30 mAb binding was first detectable on sperm from the proximal cauda epididymis, i.e., sperm at the developmental stage where fertilization competence appears. After purification by mAb affinity chromatography, the PH-30 protein retained antigenic activity, binding both the PH-30 and PH-1 mAbs. The purified protein showed two polypeptide bands of 60 and 44 kD on reducing SDS PAGE. The two polypeptides migrated further (to approximately 49 kD and approximately 33 kD) on nonreducing SDS PAGE, showing that they do not contain interchain disulfide bonds, but probably have intrachain disulfides. 44 kD appears not to be a proteolytic fragment of 60 kD because V8 protease digestion patterns did not reveal related peptide patterns from the 44- and 60-kD bands. In the absence of detergent, the purified protein precipitates, suggesting that either 60 or 44 kD could be an integral membrane polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号