首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tris(2-aminoethyl)amine (TREN) – a chelating agent used in IMAC – immobilized onto agarose gel was evaluated for the purification of IgG from human serum by negative chromatography. A one-step purification process allowed the recovery of 73.3% of the loaded IgG in the nonretained fractions with purity of 90–95% (based on total protein concentration and nephelometric analysis of albumin, transferrin, and immunoglobulins A, G, and M). The binding capacity was relatively high (66.63 mg of human serum protein/mL). These results suggest that this negative chromatography is a potential technique for purification of IgG from human serum.  相似文献   

2.
The fusion protein of green fluorescent protein (GFP) and human interleukin-2 (hIL-2) was produced in insect Trichoplusia ni larvae infected with recombinant baculovirus derived from the Autographa californica nuclear polyhedrosis virus (AcNPV). This fusion protein was composed of a metal ion binding site (His)6 for rapid one-step purification using immobilized metal affinity chromatography (IMAC), UV-optimized GFP (GFPuv), enterokinase cleavage site for recovering hIL-2 from purified fusion protein, and hIL-2 protein. The additional histidine residues on fusion protein enabled the efficient purification of fusion protein based on immobilized metal affinity chromatography. In addition to advantages of GFP as a fusion marker, GFP was able to be used as a selectable purification marker; we easily determined the correct purified fusion protein sample fraction by simply detecting GFP fluorescence.  相似文献   

3.
Plants have attracted interest as hosts for protein expression because of the promise of a large production capacity and a low production cost. However, recovery costs remain a challenge as illustrated for recovery of recombinant aprotinin, a trypsin inhibitor, with removal of native corn trypsin inhibitor from transgenic corn (Azzoni et al. in Biotechnol Bioeng 80:268–276, 2002). When expression is targeted to corn grain fractions, dry milling can separate germ and endosperm fractions. Hence, only the product-containing fraction needs to be extracted, reducing the cost of extraction and the impurity level of the extract. Selective extraction conditions can reduce impurity levels to the point that low-cost adsorbents can result in relatively high purity levels. In this work, we attempted to achieve comparable purity with these lower cost methods. We replaced whole grain extraction and purification of recombinant aprotinin with sequential trypsin affinity and IMAC steps with an alternative of germ fraction extraction and purification with ion exchange and hydrophobic interaction chromatography (HIC). Using germ extraction at acidic pH supplemented with heat precipitation to remove additional host proteins resulted in a higher specific activity feed to the chromatographic steps. The cation exchange step provided 7.6× purification with 76.4% yield and no sodium dodecyl sulfate–polyacrylamide gel electrophoresis detectable native corn trypsin inhibitor. After the HIC step (2.7× step purification with 44.0% yield), the final product had a specific activity that was 75.3% of that of the affinity-purified aprotinin.  相似文献   

4.
While immobilized metal affinity chromatography (IMAC) has been widely used for affinity purification of phosphopeptides, the technique suffers from insufficient specificity. Therefore, there is an urgent need for IMAC optimization to yield the selectivity and sensitivity that is required for more challenging analyses. Recently, 2,5-dihydroxybenzoic acid (DHB) and phosphoric acid mixture has been reported as an efficient IMAC eluant. The disadvantage of DHB is that is not suitable for electrospray ionization-mass spectrometry. While further developing the IMAC elution protocol to overcome this problem, we noticed that DHB is not necessary and found a novel combination of phosphoric acid and acetonitrile to be more efficient. The purification efficacy of the novel protocol is superior to all previously described methods, while still being compatible with the most commonly used mass-spectrometric techniques in phosphoproteomics.  相似文献   

5.
The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. "Structural biology-grade" proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter.  相似文献   

6.
Chimeric virus-like particles (VLPs) of infectious bursal disease virus (IBDV) were produced by coinfecting Spodoptera frugiperda (Sf-9) insect cells with two recombinant baculoviruses, vIBD-7 and vEDLH-22. vIBD-7 encodes VP2, VP3, and VP4 of the IBDV structural proteins. vEDLH-22 encodes VP2 with five histidine residues at the carboxy-terminus (VP2H). Coinfection produced hybrid VLPs composed of VP2, VP2H, and VP3. The additional histidine residues on VP2H enabled the efficient purification of VLPs based on immobilized metal affinity chromatography (IMAC). These results demonstrated that the VLPs formed are comprised of chimeric subunits with attached affinity ligands, and further, that sufficient His5 ligand was available for binding to the IMAC metal-chelating resin. Additionally, these novel particles were fully characterized for antigenicity by a series of monoclonal antibodies, and appeared identical to the two wild-type IBDV strains contributing subunits to the chimeric VLP. IMAC purification provides a promising low-cost and simple scheme to purify VLPs as vaccines.  相似文献   

7.
Arginine hydrochloride (ArgHCl) is a versatile solvent additive, as it suppresses protein aggregation. ArgHCl has been used for protein refolding and to solubilize proteins from loose inclusion bodies. Immobilized metal affinity chromatography (IMAC) is one of the most commonly used technologies for purification of recombinant proteins. Here we have evaluated compatibility of ArgHCl with IMAC purification for his-tag proteins. ArgHCl clearly interfered with protein binding to Ni-columns. Nevertheless, such interference was greatly reduced at ArgHCl concentration below 200 mM, demonstrating that IMAC purification can be done even in the presence of ArgHCl.  相似文献   

8.
Semi-purified DEN-4 envelope protein, obtained in Pichia pastoris, was capable of generating neutralising and protecting antibodies after immunisation in mice. Here we compared two purification processes of this recombinant protein using two chromatographic steps: immune-affinity chromatography and immobilised metal ion adsorption chromatography (IMAC). The protein purified by both methods produced functional antibodies reflected by titres of haemagglutination inhibition and neutralisation. IMAC could be used as an alternative for high scale purification.  相似文献   

9.
Immobilized metal affinity chromatography (IMAC) is widely used for protein purification, e.g., in the isolation of proteins bearing the well-known hexahistidine affinity tag. We report that IMAC matrixes can also adsorb single-stranded nucleic acids through metal ion interactions with aromatic base nitrogens and propose that metal affinity technologies may find widespread application in nucleic acid technology. Oligonucleotide duplexes, plasmid, and genomic DNA show low IMAC binding affinity, while RNA and single-stranded oligonucleotides bind strongly to matrixes such as Cu(II) iminodiacetic acid (IDA) agarose. The affinity of yeast RNA for IDA-chelated metal ions decreases in the following order: Cu(II), Ni(II), Zn(II), and Co(II). Adsorption isotherms for 20-mer oligonucleotide homopolymers show that purines are strongly favored over pyrimidines and that double-stranded duplexes are not bound. IMAC columns have been used to purify plasmid DNA from E. coli alkaline lysates, to purify a ribozyme, to remove primers and imperfect products from PCR reactions, and to separate 20-mer oligonucleotide duplexes containing centered single-base mismatches. Potential further applications include SNP scoring, hybridization assays, and the isolation of polyadenylated messenger RNA.  相似文献   

10.
Ye K  Jin S  Ataai MM  Schultz JS  Ibeh J 《Journal of virology》2004,78(18):9820-9827
Retroviral vectors produced from packaging cells are invariably contaminated by protein, nucleic acid, and other substances introduced in the manufacturing process. Elimination of these contaminants from retroviral vector preparations is helpful to reduce unwanted side effects, and purified vector preparations are desirable to improve reproducibility of therapeutic effect. Here we report a novel approach to engineer a metal binding peptide (MBP)-tagged murine leukemia virus (MuLV), allowing for one-step purification of retroviral vectors by immobilized metal affinity chromatography (IMAC). We inserted a His6 peptide into an ecotropic envelope protein (Env) by replacing part of its hypervariable region sequence with a sequence encoding the His6 peptide. Display of the His6 tag on the surface of Env endowed the vectors with a high affinity for immobilized metal ions, such as nickel. We demonstrated that the His6-tagged MuLV could be produced to high titers and could be highly purified by one-step IMAC. The protein and DNA contaminants in the purified vector supernatants were below 7 microg/ml and 25 pg/ml, respectively, indicating a 1,229-fold reduction in protein contaminant level and a 6,800-fold reduction in DNA contaminant level. About 56% of the viral vectors were recovered in the IMAC purification. The purified vectors retained their functionality and infectivity. These results establish that an MBP can be functionally displayed on the surface of ecotropic retroviruses without interfering with their integrity, and MBP-tagged retroviral vectors can be highly purified by one-step IMAC.  相似文献   

11.
This paper reports on the selectivity behaviour of tryptic peptides on a Cu(2+)-loaded immobilised metal ion affinity chromatography (IMAC) support. Ovalbumin was chosen as a model protein for investigation of the selection and separation of histidine-containing peptides by IMAC off-line coupled with capillary electrophoresis and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF). Two of five histidine-containing peptides in addition to some non-histidine-containing peptides from a tryptic digest of ovalbumin were captured by IMAC. To separate and purify the selected peptides, the IMAC sample was analysed by capillary zone electrophoresis (CZE). The sample was not separated by capillary zone electrophoresis, therefore, micellar electrokinetic chromatography (MEKC) using 10-75 mM SDS was used. Analysis of IMAC sample by MEKC, using low concentrations of SDS (10 mM) was characterised by MALDI-TOF. When using SDS at 75 mM, the migration times of reversed-phase fractions of the IMAC sample, were used to identify the peaks. One of the two selected histidine-containing peptides with two histidine residues was identified, analysing the sample by CZE or MEKC.  相似文献   

12.
After 35?years of development, immobilized metal ion affinity chromatography (IMAC) has evolved into a popular protein purification technique. This review starts with a discussion of its mechanism and advantages. It continues with its applications which include the purification of histidine-tagged proteins, natural metal-binding proteins, and antibodies. IMAC used in conjunction with mass spectroscopy for phosphoprotein fractionation and proteomics is also covered. Finally, this review addresses the developments, limitations, and considerations of IMAC in the biopharmaceutical industry.  相似文献   

13.
Serum amyloid P component (SAP) has been purified from human serum by means of immobilized metal ion affinity chromatography (IMAC). It was selectively concentrated on carboxymethylated aspartic acid agarose (CM-Asp-agarose) loaded with calcium and, employing very mild conditions, purified to electrophoretical and immunological homogeneity in a single step amounting to about 1900-fold purification. As a purification method our procedure thus compares well with bio-specific affinity chromatography.  相似文献   

14.
Fusion of peptide‐based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram‐range amounts of proteins. IMAC‐Ni(II) columns have become the natural partners of 6xHis‐tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His‐tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur‐containing molecules. In this work, we evaluated two different cysteine‐ and histidine‐containing six amino acid tags linked to the N‐terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine‐containing tagged GFPs were able to bind to IMAC‐Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC‐Ni(II) system reaches less than 20% recovery of the cysteine‐containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC‐Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A fusion protein of human interleukin-2 (hIL-2) and green fluorescent protein (GFP) was expressed in insect Sf-9 cells infected with recombinant baculovirus derived from the Autographa californica nuclear polyhedrosis virus (AcNPV). This fusion protein was comprised of a histidine affinity ligand for simplified purification using immobilized metal affinity chromatography (IMAC), UV-optimized GFP (GFPuv) as a marker, an enterokinase cleavage site for recovery of hIL-2 from the fusion, and the model product hIL-2. Successful production of hIL-2 as a fusion protein (approximately 52,000 Da) with GFPuv was obtained. GFPuv enabled rapid monitoring and quantification of the hIL-2 by simply checking the fluorescence, obviating the need for Western blot and/or ELISA assays during infection and production stages. There was no increased 'metabolic burden' due to the presence of GFPuv in the fusion product. The additional histidine residues at the N-terminus enabled efficient one-step purification of the fusion protein using IMAC. Additional advantages of GFP as a fusion marker were seen, particularly during separation and purification in that hIL-2 containing fractions were identified simply by illumination with UV light. Our results demonstrated that GFP was an effective non-invasive on-line marker for the expression and purification of heterologous protein in the suspended insect cell/baculovirus expression system.  相似文献   

16.
A six-His peptide was genetically engineered to the C-terminus of Agrobacterium radiobacter N-carbamoyl-D-amino acid amidohydrolase monomer to facilitate the protein purification with immobilized metal affinity chromatography (IMAC). The fusion enzyme, named as DCaseH, was overexpressed in Escherichia coli and one-step IMAC-purified. The production study showed that DCaseH was optimally produced at 15 degrees C for 25 h by the induction of 0.05 mM IPTG. Both Co(2+)-chelated TANOL gels and Ni(2+)-chelated nitriloacetic acid agarose gels efficiently purified DCaseH, with the former yielding purer enzyme than the latter. Highly pure DCaseH was obtained in the former purification with the addition of 5 mM imidazole in the washing buffer, and the specific enzyme activity was increased more than 11-fold. Denaturing IMAC purification successfully purified DCaseH from inclusion bodies that were mostly composed of the overexpressed DCaseH, while the attempt to refold the purified enzyme by either dialysis or solid-state refolding was not achieved. The purified native enzyme was optimally active at pH 6.5 and 50 degrees C, and the presence of 10% glycerol increased the activity. The molecular modeling of dimeric DCaseH indicated that the six-His tags were freely exposed to the protein surface, resulting in the selective and effective IMAC purification of DCaseH.  相似文献   

17.
Immobilized metal ion affinity chromatography.   总被引:14,自引:0,他引:14  
The introduction of immobilized metal ion affinity chromatography, directed toward specific protein side chains, has opened a new dimension in protein purification. This review covers the principles and practice of IMAC that can be performed under very mild, nondenaturing conditions. IMAC is particularly suitable for preparative group fractionation of complex extracts and biofluids, but can also be used in high-performance mode: "HP-IMAC." Single-step purifications of 1000-fold or more may allow isolation of a particular protein from crude extracts on a milligram or gram scale. With respect to separation efficiency, IMAC compares well with biospecific affinity chromatography, and the immobilized metal ion ligand complexes are more likely to withstand wear and tear than are antibodies or enzymes. The enormous potential of IMAC and related metal affinity techniques is only in the initial stages of being explored and exploited. Synthesis of IMA adsorbents, and various modes of performing IMAC are discussed and exemplified with selected applications. Advantages and disadvantages are listed. Effective means of counteracting the few undesirable effects that can occur are suggested.  相似文献   

18.
de Marco A 《Nature protocols》2006,1(3):1538-1543
The present purification protocol applies to target proteins that are fused to a double tag, such as NusA-His6, through a linker that includes a protease-recognition sequence. It involves two steps of immobilized metal ion affinity chromatography (IMAC). NusA stabilizes the passenger protein during translation, whereas the His-tag enables affinity purification of the fusion. The eluate resulting from the first IMAC is buffer-exchanged to remove the imidazole and to achieve optimal conditions for the enzymatic cleavage performed by a His-tagged recombinant protease. The digested sample is loaded directly for a second IMAC step and the target protein is selectively recovered in the flow-through. The resin binds residual non-digested fusion protein, double-tagged moiety, protease and any contaminant that bound the affinity resin and was eluted from the first IMAC. The purity of the target protein usually makes a further purification step unnecessary for most of the lab applications. It takes less than 5 hours to purify the protein from a 5 g pellet.  相似文献   

19.
This study illustrates the compatibility and complementary nature of aqueous two-phase extraction (ATPE) and immobilized metal affinity chromatography (IMAC) in a general recovery scheme. The purification of green fluorescent protein (GFPuv) from extracts of Eschericia coli was investigated using a combination of these two techniques. High molarity of sodium chloride was found effective in increasing selectivity, with the promotion of hydrophobic interaction the probable mechanism that drove the target protein to a particular phase in ATPE, as well as that which enhanced GFPuv adsorption in IMAC. Moreover, the similar salt condition allows the direct application of the GFPuv-containing phase to the IMAC column without additional adjustment step. A simple screen of conditions was therefore performed to generate a favorable two-step purification scheme for GFP leading to an overall high purity.  相似文献   

20.
Metal catalyzed oxidation (MCO), which typically involves oxygen free radical generation, is an important pathway that leads to the deterioration of many biological molecules in solution. The occurrence of MCO in immobilized metal affinity chromatography (IMAC) systems and its potential for inactivating biological products has not been well recognized. In this study, we report the inactivation of herpes simplex virus type 1 (HSV-1) gene therapy vector on immobilized cobalt affinity chromatography. We observed that purification of KgBHAT, an HSV-1 mutant bearing cobalt affinity tags (HAT) on the surface, on an IDA-Co2+ column using crude supernatant as starting material resulted in signification loss in virus infectivity (<5% recovery). Electron spin resonance (ESR) revealed that the virus inactivation was caused by hydroxyl free radicals generated from the interactions between cellular impurities and the metal ions on the column. Inclusion of 20 mM ascorbate, a free radical scavenger, in the chromatography mobile phase effectively scavenged the hydroxyl radicals and dramatically augmented the infectivity recovery to 70%. This finding is the first demonstration of oxygen free radical-mediated biological inactivation in an actual IMAC purification and the way on how to effectively prevent it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号