首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apolipoprotein E (Apo E) is an important genetic risk factor for multiple neurological, vascular and cardiovascular diseases. Previously, we reported Apo E isoprotein-specific modulation of tissue plasminogen activator (tPA) using an in vitro blood-clotting assay. Here, we studied the conformational changes of Apo E2, E3 and E4 in the presence of tPA and vice versa using circular dichroism (CD) and dual polarization interferometry (DPI). We report isoprotein and state-specific intermolecular interactions between the Apo E isoforms and tPA. Apo E2 interaction with immobilized tPA leads to significant conformational changes which are not observed with Apo E3 or E4. Additionally, tPA induces changes in helicity of lipidated Apo E2 whereas no detectable changes were observed in Apo E3 or E4. The Tukey's test for interaction indicated a significant (P < 0.001) interaction between tPA and Apo E2 in the lipidated environment. These results may be important regarding the mechanism by which Apo E has isoprotein-specific effects on many biological processes and diseases involving blood clotting, proteolysis and perfusion.  相似文献   

2.
Apolipoprotein E (apoE) is a ligand for members of the low-density lipoprotein receptor (LDLR) family and functions in plasma cholesterol homeostasis. A fluorescence-based assay has been employed in molecular studies of receptor-ligand interactions. Competition experiments revealed isoform-specific differences in binding of lipid-associated apoE N terminal (NT) domain to a recombinant soluble LDLR (sLDLR). In a similar manner, lipid--associated-but not lipid-free--full-length apoE3 showed binding activity to sLDLR. The molecular chaperone, receptor-associated protein, inhibited apoE3-NT-phospholipid complex binding to sLDLR. Kinetic studies of apoE3-NT-phospholipid complex interaction with sLDLR revealed time-dependent effects of apoE-NT isoform binding to sLDLR. The results reveal a discerning method for study of the molecular basis of ligand interactions that likely influence receptor function in maintenance of whole body cholesterol homeostasis.  相似文献   

3.
Apolipoprotein E     
  相似文献   

4.
To define the lipid and receptor binding regions of apolipoprotein E (apoE), we have synthesized four peptides beginning at residue 169 and continuing through the putative receptor binding region and ending at residue 129 so as to include a proposed lipid binding domain. The peptides were synthesized by solid-phase techniques, cleaved with anhydrous HF, and purified by ion-exchange and semipreparative reversed-phase high-performance liquid chromatography (HPLC). The peptides had the correct amino acid composition and were greater than 99% pure by analytical reversed-phase HPLC. The circular dichroic spectrum of each peptide was recorded before and after mixing with dimyristoylphosphatidylcholine. With apoE (148-169), apoE (144-169), and apoE (139-169), no changes were observed in the ellipticity at 222 nm. However, with apoE (129-169), an increase in alpha-helicity to approximately 42% was observed. Density gradient ultracentrifugation of the lipid-peptide mixture permitted isolation of a complex with apoE (129-169) with a molar ratio of lipid to peptide of 125:1, which was stable to recentrifugation. The alpha-helicity of the peptide in the complex was estimated to be 56%. No complexes were isolated from the gradients of the shorter peptides. Therefore, we conclude that the amphipathic helix formed by residues 130-150 contains one of the lipid binding regions of apoE.  相似文献   

5.
6.
The N-methyl-D-aspartate receptor (NMDAR) plays a critical role in synaptic plasticity. Post-translational modifications of NMDARs, such as phosphorylation, alter both the activity and trafficking properties of NMDARs. Ubiquitination is increasingly being recognized as another post-translational modification that can alter synaptic protein composition and function. We identified Mind bomb-2 as an E3 ubiquitin ligase that interacts with and ubiquitinates the NR2B subunit of the NMDAR in mammalian cells. The protein-protein interaction and the ubiquitination of the NR2B subunit were found to be enhanced in a Fyn phosphorylation-dependent manner. Immunocytochemical studies reveal that Mind bomb-2 is localized to postsynaptic sites and colocalizes with the NMDAR in apical dendrites of hippocampal neurons. Furthermore, we show that NMDAR activity is down-regulated by Mind bomb-2. These results identify a specific E3 ubiquitin ligase as a novel interactant with the NR2B subunit and suggest a possible mechanism for the regulation of NMDAR function involving both phosphorylation and ubiquitination.  相似文献   

7.
8.
The N-methyl-D-aspartate receptor is an important mediator of the behavioral effects of ethanol in the central nervous system. Previous studies have demonstrated sites in the third and fourth membrane-associated (M) domains of the N-methyl-D-aspartate receptor NR2A subunit that influence alcohol sensitivity and ion channel gating. We investigated whether two of these sites, Phe-637 in M3 and Met-823 in M4, interactively regulate the ethanol sensitivity of the receptor by testing dual substitution mutants at these positions. A majority of the mutations decreased steady-state glutamate EC(50) values and maximal steady-state to peak current ratios (I(ss)/I(p)), whereas only two mutations altered peak glutamate EC(50) values. Steady-state glutamate EC(50) values were correlated with maximal glutamate I(ss)/I(p) values, suggesting that changes in glutamate potency were attributable to changes in desensitization. In addition, there was a significant interaction between the substituents at positions 637 and 823 with respect to glutamate potency and desensitization. IC(50) values for ethanol among the mutants varied over the approximate range 100-325 mm. The sites in M3 and M4 significantly interacted in regulating ethanol sensitivity, although this was apparently dependent upon the presence of methionine in position 823. Molecular dynamics simulations of the NR2A subunit revealed possible binding sites for ethanol near both positions in the M domains. Consistent with this finding, the sum of the molecular volumes of the substituents at the two positions was not correlated with ethanol IC(50) values. Thus, there is a functional interaction between Phe-637 and Met-823 with respect to glutamate potency, desensitization, and ethanol sensitivity, but the two positions do not appear to form a unitary site of alcohol action.  相似文献   

9.
Summary The frequencies of genetic apo E isoforms E2, E3 and E4 were determined in 523 patients with myocardial infarction and compared to those in a control group (1031 blood donors). A significant difference in the frequency of apo E4 was noted between patients and controls (0.05> P>0.025). No differences in the frequencies of isoforms E3 and E2 were observed. In particular, there was no significant difference between the two groups in the frequency of apo E2 homozygosity. a condition that is associated with type III hyperlipoproteinemia. However, all E2 homozygote survivors of myocardial infarction had hyperlipoproteinemia type III (cholesterol 269±29 mg/dl; triglyceride 419±150 mg/dl; age 54±14 years; N=5). On the contrary, E2 homozygote controls (all apo E-2/2 blood donors and their apo E-2/2 relatives who were from the same age range as the patients) had primary dysbetalipoproteinemia but normal or subnormal plasma cholesterol concentrations (cholesterol 184±28 mg/dl; triglyceride 151±52 mg/dl; age 56±13 years; N=11). This indicates that E2 homozygotes with hyperlipoproteinemia type III who occur rarely in the population but comprise about 1% of myocardial infarction patients have a markedly increase risk for coronary atherosclerosis, whereas the risk for E2 homozygotes with normal or subnormal plasma cholesterol (=primary dysbetalipoproteinemia) may be considerably lower than for the general population. The data illustrate the complex relationship between apo E genes, lipid levels, and risk for atherosclerosis.  相似文献   

10.
Apolipoprotein E (ApoE) has an important role in the metabolism of lipids through its major isoforms (ε2, ε3, ε4). In particular, ApoE ε4, has been considered as a major genetic risk factor for cardiovascular diseases (CVD). The aim of our study is to investigate the frequency of ApoE gene polymorphisms (rs 429358C > T, rs 7412C > T) and their relationship to lipid parameters in a group of Lebanese hypercholesterolemic subjects (22 males and 24 females, aged 25–80 years). Lipid profile, apolipoproteins A-I and B were determined using fasting serum samples; and molecular analysis of ApoE polymorphisms using blood in EDTA tubes. The distribution of the four ApoE genotypes detected in this study was: ε3/ε3 (73.9%), ε3/ε4 (17.4%), ε2/ε3 (6.5%), and ε2/ε4 (2.2%) resulting in allelic frequencies for ε2, ε3 and ε4 of 4.3%, 85.9% and 9.8%, respectively. No association was determined among any of the lipid parameters, gender and ApoE genotypes. Lipid parameters were not statistically different among various ApoE genotypes (p > 0.05). ApoE ε2 frequency was found to be lower than that previously reported for healthy Lebanese (7.2%). CVD is one of the major leading causes of mortality in Lebanon with a reported prevalence of 12.2% in males and 7.7% in females, which incidentally agrees with our finding regarding ε4 allelic frequency of 13.6% in males and 6.3% in females. Consequently, larger prospective studies are recommended to highlight the correlation of ApoE polymorphisms to other biochemical and environmental factors involved in CVD.  相似文献   

11.
ApoE Receptor 2 (ApoER2) and the very low density lipoprotein receptor (VLDLR) are type I transmembrane proteins belonging to the LDLR family of receptors. They are neuronal proteins found in synaptic compartments that play an important role in neuronal migration during development. ApoER2 and VLDLR bind to extracellular glycoproteins, such as Reelin and F-spondin, which leads to phosphorylation of adaptor proteins and subsequent activation of downstream signaling pathways. It is thought that ApoER2 and VLDLR undergo clustering upon binding to their ligands, but no direct evidence of clustering has been shown. Here we show strong clustering of ApoER2 induced by the dimeric ligands Fc-RAP, F-spondin, and Reelin but relatively weak clustering with the ligand apoE in the absence of lipoproteins. This clustering involves numerous proteins besides ApoER2, including amyloid precursor protein and the synaptic adaptor protein PSD-95. Interestingly, we did not observe strong clustering of ApoER2 with VLDLR. Clustering was modulated by both extracellular and intracellular domains of ApoER2. Together, our data demonstrate that several multivalent ligands for ApoER2 induce clustering in transfected cells and primary neurons and that these complexes included other synaptic molecules, such as APP and PSD-95.  相似文献   

12.
The synthesis of a 37-kilodalton (kDa) protein which has been shown recently to be identical with apolipoprotein E (apo-E) was increased after sciatic nerve injury of the rat. When regeneration of the nerve was allowed, its synthesis returned to control levels at about 8 weeks post injury. In this report it is shown that similar time-course studies of the protein in the rat optic nerve revealed a delayed increase of the protein but a comparably high level of synthesis at 3 weeks post injury. This level was maintained up to at least 18 weeks after crush. Furthermore, two-dimensional electrophoresis revealed that the characteristic "trailing" of the protein is due to its sialylation, because it was reduced after neuraminidase treatment. This treatment, however, detected a neuraminidase-resistant heterogeneous form in CNS tissue and a homogeneous form in peripheral nervous tissue. The trailing persisted up to 18 days of culture of optic nerve explants, of CNS glial cells, and of peritoneal macrophages, but disappeared during the first culture days of sciatic nerve explants and was not observed in Schwann cell culture media. Incorporation studies with 35SO4 revealed that apo-E was the major sulfated protein in culture media conditioned by CNS glial cells, whereas sulfation of the protein was undetectable in Schwann cell cultures. Because macrophages are likely to be the major source of apo-E in both peripheral and central glial cell cultures as well as in injured optic and sciatic nerves, it is hypothesized that resident cells of sciatic nerves secrete potent sulfatases. As a result, sialic acid residues may be more susceptible to degradation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Using polyacrylamide gel isoelectric focusing followed by immunoblotting with anti-human apolipoprotein E (APO E) antibody, the genetic polymorphism of APO E was determined from desialylated plasma of 554 unrelated adults of four European sheep (Suffolk, Corriedale, Cheviot, and Finnish Landrace) and five Asian local sheep (Bhyanglung, Baruwal, Kagi, Lampuchhre, and Vietnamese). Twenty phenotypes consisting of the homozygous and heterozygous combinations of two APO E variants within the seven variants (E1-E7) detected were identified. Family and population data supported the hypothesis that the phenotypes are controlled by seven codominant alleles, designated APOE1 to APOE7, at a single autosomal locus. The common alleles, APOE4, APOE5, and APOE7 were observed at mean frequencies of 0.5763, 0.1471, and 0.1921 in the European sheep group and 0.4920, 0.1123, and 0.2995 in the Asian local sheep group, respectively.  相似文献   

14.
Apolipoprotein A-IV is a 46kDa glycoprotein that is synthesized by intestinal enterocytes and is incorporated into the surface of nascent chylomicrons. Considerable evidence suggests that apolipoprotein A-IV plays a role in intestinal lipid absorption and chylomicron assembly. We have proposed that polymorphisms that alter the interfacial behavior of apolipoprotein A-IV may modulate the physical properties and metabolic fate of plasma chylomicrons. Of the reported genetic polymorphisms of apolipoprotein A-IV, two, Q360H and T347S, are known to occur at high frequencies among the world populations. Biophysical studies have established that the Q360H isoprotein displays higher lipid affinity; conversely the T347S isoprotein is predicted to be less lipid avid. Recent studies have shown that the Q360H polymorphism is associated with increased postprandial hypertriglyceridemia, a reduced low-density lipoprotein response to dietary cholesterol in the setting of a moderate fat intake, an increased high-density lipoprotein response to changes in total dietary fat content, and lower body mass and adiposity; the T347S polymorphism appears to confer the opposite effects. Studies on the diet-gene interactions of other apolipoprotein A-IV alleles are needed, as are studies on the interactions between apolipoprotein A-IV alleles and other apolipoprotein polymorphisms.  相似文献   

15.
Apolipoprotein E phenotypes and hyperlipidemia   总被引:17,自引:0,他引:17  
Summary Apolipoprotein E phenotypes were determined in 361 patients with hyperlipidemia and in controls. The E2 isoform was significantly more frequent in the group of hyperlipidemics (P<0.0005). This was not due to a higher frequency of E-2/2 homozygotes with type III hyperlipoproteinemia, but rather to a significantly higher frequency of E2 heterozygotes (P<0.0005). Subgrouping of hyperlipidemics into patients with a) hypertriglyceridemia, b) hypercholesterolemia and c) mixed hyperlipidemia revealed i) that isoform E2 was significantly more frequent in patients with hypertriglyceridemia (0.001>P>0.005), ii) that isoform E4 was significantly more frequent in patients with hypercholesterolemia (0.01>P>0.005) and iii) that isoforms E2 (P>0.005) and E4 (0.05>P>0.025) were both more frequent in patients with mixed hyperlipidemia. Roughly 20% of patients with mixed hyperlipidemia had one of the rare phenotypes E-4/4,-4/2 or-2/2. We conclude that alleles 2 and 4 both contribute to the susceptibility for, and/or phenotypic expression of hyperlipidemia. Whereas the gene 2 seems to exert its influence on plasma lipoproteins by an abnormal gene product (E2) that has reduced binding activity to lipoprotein receptors, the mechanism underlying the association of the 4 gene with hyperlipidemia is presently unclear.  相似文献   

16.
Apolipoprotein E (apoE) genotypes were determined in 165 Saudis. The prevalence of genotype, E3/E3, E3/E4 and E4/E4 was found to be 71, 27 and 2% respectively. The E3/E3 was the most prevalent genotype among the Saudis followed by E3/E4. However, other genotypes E2/E2, E2/E3 and E2/E4 were absent showing the absence of E2 allele in the test population. The high frequencies of the E3 allele (0.845) and E3/E3 genotype (0.71) and absence of E2 allele in Saudis under study are similar to those reported earlier for Native Americans, Mexican-Americans, Mayans, Cayapa, Mazatecan Indians and Mexican Mestizos populations.  相似文献   

17.
Apolipoprotein E (apoE) genotypes were determined in 165 Saudis. The prevalence of genotype, E3/E3, E3/E4 and E4/E4 was found to be 71, 27 and 2% respectively. The E3/E3 was the most prevalent genotype among the Saudis followed by E3/E4. However, other genotypes E2/E2, E2/E3 and E2/E4 were absent showing the absence of E2 allele in the test population. The high frequencies of the E3 allele (0.845) and E3/E3 genotype (0.71) and absence of E2 allele in Saudis under study are similar to those reported earlier for Native Americans, Mexican-Americans, Mayans, Cayapa, Mazatecan Indians and Mexican Mestizos populations.  相似文献   

18.
Homozygosity for the apolipoprotein (apo) E variant apoE2(158 Arg----Cys) invariably gives rise to dysbetalipoproteinemia, and when associated with obesity or a gene for hyperlipidemia, results in type III hyperlipoproteinemia. The association of the E2/2 phenotype with type IV/V hyperlipoproteinemia rather than type III hyperlipoproteinemia in identical twin brothers led us to investigate the primary structure of their apoE. Lipoprotein electrophoresis on agarose gels confirmed the presence of increased very low density lipoproteins (VLDL) and chylomicrons but little, if any, beta-VLDL, indicating that these subjects did not have dysbetalipoproteinemia. When the apoE from these twins was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis on a system that can distinguish apoE2(158 Arg----Cys) from all other known apoE variants, it gave rise to two components. One had the unique mobility of apoE2(158 Arg----Cys), and one migrated in the position of the other variants of apoE (and normal apoE3), indicating that the brothers were heterozygous for apoE2(158 Arg----Cys) and a second apoE2 isoform. Cysteamine modification and isoelectric focusing showed that, like apoE2(158 Arg----Cys), the second apoE2 isoform also contained two cysteine residues. The structural mutation in the second apoE2 isoform was determined by peptide sequencing. Like normal apoE3, this variant had arginine at position 158, but differed from apoE3 by the substitution of cysteine for arginine at position 228. Total apoE isolated from the brothers had the same receptor-binding activity in a competitive binding assay as a 1:1 mixture of normal apoE3 and apoE2(158 Arg----Cys).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The synapse-associated protein-97 (SAP97) is important in the proper trafficking and cell surface maintenance of the N-methyl-D-aspartate ionotropic glutamate receptor. The molecular scaffold/receptor interaction is mediated by the association of the C terminus of the NR2B subunit of the N-methyl-D-aspartate receptor with the PDZ domains of SAP97. Here, we characterize the binding of the C terminus of NR2B with the PDZ domains of SAP97 and determine the structure of the PDZ1-NR2B complex employing high-resolution NMR. Based on fluorescence anisotropy, the NR2B subunit binds to the first and second PDZ domains of SAP97, with higher affinity for PDZ2; no appreciable binding to PDZ3 could be measured. The structural features of the NR2B bound to PDZ1 is consistent with the canonical PDZ-binding motif with the glutamic acid at the -3 position of the C terminus (i.e. -E-S-D-V) interacting with the beta2/beta3 loop. Two sites within the loop of PDZ1 were replaced with the corresponding residue from PDZ2, D243G and P245Q. The former mutation, designed to remove a possible Coulombic repulsion between E(-3)(NR2B) and Asp-243 (PDZ1) has only a minimal effect on binding. The P245Q mutation leads to a 2-fold increase in binding affinity of NR2B, approaching that observed for wild-type PDZ2. These results indicate that modification of the beta2/beta3 loop provides an avenue for regulating the ligand specificity of PDZ domains.  相似文献   

20.
The triggering receptor expressed on myeloid cells 2 (TREM2) is an Ig-like V-type receptor expressed by populations of myeloid cells in the central nervous system and periphery. Loss-of-function mutations in TREM2 cause a progressive, fatal neurodegenerative disorder called Nasu-Hakola disease. In addition, a TREM2 R47H coding variant was recently identified as a risk factor for late-onset Alzheimer disease. TREM2 binds various polyanionic molecules but no specific protein ligands have been identified. Here we show that TREM2 specifically binds apolipoprotein E, a well established participant in Alzheimer disease. TREM2-Ig fusions efficiently precipitate ApoE from cerebrospinal fluid and serum. TREM2 also binds recombinant ApoE in solution and immobilized ApoE as detected by ELISA. Furthermore, the Alzheimer disease-associated R47H mutation, and other artificial mutations introduced in the same location, markedly reduced the affinity of TREM2 for ApoE. These findings reveal a link between two Alzheimer disease risk factors and may provide important clues to the pathogenesis of Nasu-Hakola disease and other neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号