首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic etiology for many forms of hearing impairment (HI) is very diverse. Non-syndromic HI (NSHI) is one of the most heterogeneous traits known. Autosomal recessive forms of prelingual HI account for approximately 75% of hereditary cases. A novel autosomal recessive NSHI locus, DFNB44, was mapped to a 20.9 cM genetic interval on chromosome 7p14.1-q11.22, according to the Marshfield genetic map, in a consanguineous Pakistani family. Multipoint linkage analysis resulted in a maximum LOD score of 5.0 at marker D7S1818. The 3-unit support interval ranged from marker D7S2209 to marker D7S2435, spanning a 30.1 Mb region on the sequence-based physical map.  相似文献   

2.
Hereditary hearing impairment (HI) displays extensive genetic heterogeneity. Autosomal recessive (AR) forms of prelingual HI account for ~75% of cases with a genetic etiology. A novel AR non-syndromic HI locus (DFNB47) was mapped to chromosome 2p25.1-p24.3, in two distantly related Pakistani kindreds. Genome scan and fine mapping were carried out using microsatellite markers. Multipoint linkage analysis resulted in a maximum LOD score of 4.7 at markers D2S1400 and D2S262. The three-unit support interval was bounded by D2S330 and D2S131. The region of homozygosity was found within the three-unit support interval and flanked by markers D2S2952 and D2S131, which corresponds to 13.2 cM according to the Rutgers combined linkage-physical map. This region contains 5.3 Mb according to the sequence-based physical map. Three candidate genes, KCNF1, ID2 and ATP6V1C2 were sequenced, and were found to be negative for functional sequence variants.  相似文献   

3.
A novel locus DFNB90 was mapped to 7p22.1-p15.3 by carrying out a genome scan in a multigenerational consanguineous family from Pakistan with autosomal recessive nonsyndromic hearing impairment (ARNSHI).DFNB90 is the eighth ARNSHI locus mapped to chromosome 7. A multipoint LOD score of 4.0 was obtained at a number of SNP marker loci spanning from rs1468996 (chromosome 7: 5.7 Mb) tors957960 (chromosome 7: 18.8 Mb). The 3-unit support interval and the region of homozygosity for DFNB90 spans from markers rs1553960 (chromosome 7: 4.9 Mb) to rs206198 (chromosome 7: 20.3 Mb). Candidate genes ACTB, BZW, OCM, MACC1, NXPH1, PRPS1L1, RAC1 and RPA3, which lie within the DFNB90 region, were sequenced and no potentially causal variants were identified.  相似文献   

4.
DFNB89 is a novel autosomal recessive nonsyndromic hearing impairment (ARNSHI) locus that was mapped to 16q21-q23.2. Linkage to the region was established by carrying out genome-wide linkage scans in two unrelated, consanguineous Pakistani families segregating ARNSHI. The maximum multipoint LOD score is 9.7 for both families and for each family, a significant maximum LOD score of 6.0 and 3.7 were obtained. The 3-unit support interval and the region of homozygosity for the two families extend from rs717293 (chr16: 62.1?Mb) to rs728929 (chr16: 78.2?Mb) and contain 16.1?Mb of sequence. A total of 146 genes are within the DFNB89 interval. Eight candidate genes, CALB2, CDH1, CDH3, CDH11, HAS3, NOB1, PLEKHG4 and SMPD3, were sequenced, but no potentially causal variants were discovered. DFNB89 is the second ARNSHI locus mapped to chromosome 16.  相似文献   

5.
For autosomal recessive nonsyndromic hearing impairment over 30 loci have been mapped and 19 genes have been identified. DFNB38, a novel locus for autosomal recessive nonsyndromic hearing impairment, was localized in a consanguineous Pakistani kindred to 6q26-q27. The affected family members present with profound prelingual sensorineural hearing impairment and use sign language for communications. Linkage was established to microsatellite markers located on chromosome 6q26-q27 (Multipoint lod score 3.6). The genetic region for DFNB38 spans 10.1 cM according to the Marshfield genetic map and is bounded by markers D6S980 and D6S1719. This genetic region corresponds to 3.4 MB on the sequence-based physical map.  相似文献   

6.
Autosomal recessive congenital ichthyosis (ARCI) is a rare, clinically and genetically heterogeneous genodermatosis. One gene (transglutaminase 1, on 14q11) and one additional locus (on 2q33-35, with an unidentified gene) have been shown to be associated with a lamellar, nonerythrodermic type of ARCI. We performed a genomewide scan, with 370 highly polymorphic microsatellite markers, on five affected individuals from one large Finnish family with nonerythrodermic, nonlamellar ARCI. The only evidence for linkage emerged from markers in a 6.0-cM region on chromosome 19p13.1-2. The maximum two-point LOD score of 7.33 was obtained with the locus D19S252, and multipoint likelihood calculations gave a maximum location score of 5.2. The affected individuals share two common core haplotypes, which makes compound heterozygosity possible. The novel disease locus is the third locus linked to ARCI, supporting previous evidence for genetic heterogeneity of ARCI. This is also the first locus for a nonlamellar, nonerythrodermic phenotype of ARCI.  相似文献   

7.
Hereditary non-syndromic deafness is extremely heterogeneous. Autosomal recessive forms account for approximately 80% of genetic cases. Autosomal recessive non-syndromic sensorineural deafness segregating in a large consanguineous Tunisian family was mapped to chromosome 6p21.2-22.3. A maximum lod score of 5.36 at theta=0 was obtained for the polymorphic microsatellite marker IR2/IR4. Haplotype analysis defined a 16.5-Mb critical region between microsatellite markers D6S1602 and D6S1665. The screening of 3 candidate genes, COL11A2, BAK1 and TMHS, did not reveal any disease causing mutation, suggesting that this is a novel deafness locus, which has been named DFNB66. A search in the Human Cochlear EST Library for ESTs located in this critical interval allowed us to identify several candidates. Further investigations on these candidates are needed in order to identify the deafness-causing gene in this Tunisian family.  相似文献   

8.
We ascertained three consanguineous Pakistani families (PKDF291, PKDF335 and PKDF793) segregating nonsyndromic recessive hearing loss. The hearing loss segregating in PKDF335 and PKDF793 is moderate to severe, whereas it is profound in PKDF291. The maximum two-point LOD scores are 3.01 (D19S1034), 3.85 (D19S894) and 3.71 (D19S894) for PKDF291, PKDF335 and PKDF793, respectively. Haplotype analyses of the three families define a 1.16 Mb region of overlap of the homozygous linkage intervals bounded by markers D19S216 (20.01 cM) and D19S1034 (20.75 cM). These results define a novel locus, DFNB72, on chromosome 19p13.3. There are at least 22 genes in the 1.16 Mb interval, including PTPRS, ZNRF4 and CAPS. We identified no pathogenic variants in the exons and flanking intronic sequences of these three genes in affected members of the DFNB72 families. DFNB72 is telomeric to DFNB68, the only other known deafness locus with statistically significant support for linkage to chromosome 19p.  相似文献   

9.
10.
Late-onset familial Alzheimer disease (LOFAD) is a genetically heterogeneous and complex disease for which only one locus, APOE, has been definitively identified. Difficulties in identifying additional loci are likely to stem from inadequate linkage analysis methods. Nonparametric methods suffer from low power because of limited use of the data, and traditional parametric methods suffer from limitations in the complexity of the genetic model that can be feasibly used in analysis. Alternative methods that have recently been developed include Bayesian Markov chain-Monte Carlo methods. These methods allow multipoint linkage analysis under oligogenic trait models in pedigrees of arbitrary size; at the same time, they allow for inclusion of covariates in the analysis. We applied this approach to an analysis of LOFAD on five chromosomes with previous reports of linkage. We identified strong evidence of a second LOFAD gene on chromosome 19p13.2, which is distinct from APOE on 19q. We also obtained weak evidence of linkage to chromosome 10 at the same location as a previous report of linkage but found no evidence for linkage of LOFAD age-at-onset loci to chromosomes 9, 12, or 21.  相似文献   

11.
Polycystic liver disease (PCLD) is characterized by the growth of fluid-filled cysts of biliary epithelial origin in the liver. Although the disease is often asymptomatic, it can, when severe, lead to complications requiring surgical therapy. PCLD is most often associated with autosomal dominant polycystic kidney disease (ADPKD); however, families with an isolated polycystic liver phenotype without kidney involvement have been described. The clinical presentation and histological features of polycystic liver disease in the presence or absence of ADPKD are indistinguishable, raising the possibility that the pathogenetic mechanisms in the diseases are interrelated. We ascertained two large families with polycystic liver disease without kidney cysts and performed a genomewide scan for genetic linkage. A causative gene, PCLD, was mapped to chromosome 19p13.2-13.1, with a maximum LOD score of 10.3. Haplotype analysis refined the PCLD interval to 12.5 cM flanked by D19S586/D19S583 and D19S593/D19S579. The discovery of genetic linkage will facilitate diagnosis and study of this underdiagnosed disease entity. Identification of PCLD will be instrumental to an understanding of the pathogenesis of cyst formation in the liver in isolated PCLD and in ADPKD.  相似文献   

12.
Theγ-actin(ACTG1)gene is a cytoplasmic nonmuscle actin gene,which encodes a major cytoskeletal protein in the sensory hair cells of the cochlea.Mutations in ACTG1 were found to cause autosomal dominant,progressive,sensorineural hearing loss linked to the DFNA 20/26 locus on chromosome 17q25.3 in European and American families,respectively.In this study,a novel missense mutation (c.364A>G;p.I122V)co-segregated with the affected individuals in the family and did not exist in the unaffected family members and 150 unrelated normal controls.The alteration of residue I1e122 was predicted to damage its interaction with actin-binding proteins,which may cause disruption of hair cell organization and function.These findings strongly suggested that the I122V mutation in ACTG1 caused autosomal dominant non-syndromic hearing impairment in a Chinese family and expanded the spectrum of ACTG1 mutations causing hearing loss.  相似文献   

13.
An autosomal recessive nonsyndromic deafness locus, DFNB10, was previously localized to a 12-cM region near the telomere of chromosome 21 (21q22.3). This locus was discovered in a large, consanguineous Palestinian family. We have identified and ordered a total of 50 polymorphic microsatellite markers in 21q22.3, comprising 16 published and 34 new markers, precisely mapped and ordered on BAC/cosmid contigs. Using these microsatellite markers, the locus for DFNB10 has been refined to an area of less than 1 Mb between markers 1016E7.CA60 and 1151C12.GT45. Six previously published cDNAs were mapped to this critical region, and their genomic structures were determined to facilitate mutation analysis in DFNB10. All six genes in this region (in order from centromere to telomere: White/ABCG1, TFF3, TFF2, TFF1, PDE9A, and NDUVF3) have been screened and eliminated as candidates for DFNB10. The new microsatellite markers and single nucleotide polymorphisms identified in this study should enable the refined mapping of other genetic diseases that map to 21q22.3. In addition, the critical region for DFNB10 has been reduced to a size amenable to an intensive positional cloning effort.  相似文献   

14.
15.
The cause of Parkinson disease (PD) is still unknown, but genetic factors have recently been implicated in the etiology of the disease. So far, four loci responsible for autosomal dominant PD have been identified. Autosomal recessive juvenile parkinsonism (ARJP) is a clinically and genetically distinct entity; typical PD features are associated with early onset, sustained response to levodopa, and early occurrence of levodopa-induced dyskinesias, which are often severe. To date, only one ARJP gene, Parkin, has been identified, and multiple mutations have been detected both in families with autosomal recessive parkinsonism and in sporadic cases. The Parkin-associated phenotype is broad, and some cases are indistinguishable from idiopathic PD. In > or = 50% of families with ARJP that have been analyzed, no mutations could be detected in the Parkin gene. We identified a large Sicilian family with four definitely affected members (the Marsala kindred). The phenotype was characterized by early-onset (range 32-48 years) parkinsonism, with slow progression and sustained response to levodopa. Linkage of the disease to the Parkin gene was excluded. A genomewide homozygosity screen was performed in the family. Linkage analysis and haplotype construction allowed identification of a single region of homozygosity shared by all the affected members, spanning 12.5 cM on the short arm of chromosome 1. This region contains a novel locus for autosomal recessive early-onset parkinsonism, PARK6. A maximum LOD score 4.01 at recombination fraction .00 was obtained for marker D1S199.  相似文献   

16.
Weill-Marchesani syndrome (WMS) is a rare disease characterized by short stature, brachydactyly, joint stiffness, and characteristic eye abnormalities, including microspherophakia, ectopia lentis, and glaucoma. Both autosomal recessive and autosomal dominant modes of inheritance have been described in association with WMS. We have performed a genome-wide search in two large consanguineous families of Lebanese and Saudian origin consistent with an autosomal recessive mode of inheritance. Here, we report the linkage of the disease gene to chromosome 19p13.3-p13.2 (Zmax=5.99 at theta=0 at locus D19S906). A recombination event between loci D19S905 and D19S901 defines the distal boundary, and a second recombination event between loci D19S221 and D19S840 defines the proximal boundary of the genetic interval encompassing the WMS gene (12.4 cM). We hope that our ongoing studies will lead to the identification of the disease-causing gene.  相似文献   

17.
Nonsyndromic hearing loss (NSHL) is the most common type of hearing impairment in the elderly. Environmental and hereditary factors play an etiologic role, although the relative contribution of each is unknown. To date, 39 NSHL genes have been localized. Twelve produce autosomal dominant hearing loss, most frequently postlingual in onset and progressive in nature. We have ascertained a large, multigenerational family in which a gene for autosomal dominant NSHL is segregating. Affected individuals experience progressive hearing loss beginning in the 2d-4th decades, eventually making the use of amplification mandatory. A novel locus, DFNA13, was identified on chromosome 6p; the disease gene maps to a 4-cM interval flanked by D6S1663 and D6S1691, with a maximum two-point LOD score of 6.409 at D6S299.  相似文献   

18.
19.
Molecular Biology Reports - Autosomal recessive non-syndromic hearing loss (ARNSHL) is a highly heterogeneous disease, for which more than 70 genes have been identified. MYO15A mutations have been...  相似文献   

20.
We have identified five different homozygous recessive mutations in a novel gene, TMIE (transmembrane inner ear expressed gene), in affected members of consanguineous families segregating severe-to-profound prelingual deafness, consistent with linkage to DFNB6. The mutations include an insertion, a deletion, and three missense mutations, and they indicate that loss of function of TMIE causes hearing loss in humans. TMIE encodes a protein with 156 amino acids and exhibits no significant nucleotide or deduced amino acid sequence similarity to any other gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号