共查询到20条相似文献,搜索用时 15 毫秒
1.
We have chosen E. coli K92, which produces the alternating structure alpha(2-8)neuNAc alpha(2-9)neuNAc as a model system for studying bacterial polysaccharide biosynthesis. We have shown that the polysialyltransferase encoded by the K92 neuS gene can synthesize both alpha(2-8) and alpha(2-9) neuNAc linkages in vivo by 13C-nuclear magnetic resonance analysis of polysaccharide isolated from a heterologous strain containing the K92 neuS gene. The K92 polysialyltransferase is associated with the membrane in lysates of cells harboring the neuS gene in expression vectors. Although the enzyme can transfer sialic acid to the nonreducing end of oligosaccharides with either linkage, it is unable to initiate chain synthesis without exogenously added polysialic acid. Thus, the polysialyltransferase encoded by neuS is not sufficient for de novo synthesis of polysaccharide but requires another membrane component for initiation. The acceptor specificity of this polysialyltransferase was studied using sialic acid oligosaccharides of various structures as exogenous acceptors. The enzyme can transfer to the nonreducing end of all bacteria polysialic acids, but has a definite preference for alpha(2-8) acceptors. Gangliosides containing neuNAc alpha(2-8)neuNAc are elongated, whereas monsialylated gangliosides are not. Disialylgangliosides are better acceptors than short oligosaccharides, suggesting a lipid-linked oligosaccharide may be preferred in the elongation reaction. These studies show that the K92 polysialyltransferase catalyzes an elongation reaction that involves transfer of sialic acid from CMP-sialic acid to the nonreducing end of two different acceptor substrates. 相似文献
2.
E R Vimr R Bergstrom S M Steenbergen G Boulnois I Roberts 《Journal of bacteriology》1992,174(15):5127-5131
The neuS-encoded polysialytransferase (polyST) in Escherichia coli K1 catalyzes synthesis of polysialic acid homopolymers composed of unbranched sialyl alpha 2,8 linkages. Subcloning and complementation experiments showed that the K1 neuS was functionally interchangeable with the neuS from E. coli K92 (S. M. Steenbergen, T. J. Wrona, and E. R. Vimr, J. Bacteriol. 174:1099-1108, 1992), which synthesizes polysialic acid capsules with alternating sialyl alpha 2,8-2,9 linkages. To better understand the relationship between these polySTs, the complete K92 neuS sequence was determined. The results demonstrated that K1 and K92 neuS genes are homologous and indicated that the K92 copy may have evolved from its K1 homolog. Both K1 and K92 structural genes comprised 1,227 bp. There were 156 (12.7%) differences between the two sequences; among these mutations, 55 did not affect the derived primary structure of K92 polyST and hence were synonymous with the K1 sequence. Assuming maximum parsimony, another estimated 17 synonymous mutations plus 84 nonsynonymous mutations could account for the 70 amino acid replacements in K92 polyST; 36 of these replacements were judged to be conservative when compared with those of K1 polyST. There were no changes detected in the first 146 5' or last 129 3' bp of either gene, suggesting, in addition to the observed mutational differences, the possibility of a past recombination event between neuS loci of two different kps clusters. The results indicate that relatively few amino acid changes can account for the evolution of a glycosyltransferase with novel linkage specificity. 相似文献
3.
Glycoconjugates containing polysialic acid have many biological activities and represent target molecules for therapeutic interventions. Enzymatic synthesis of these glycoconjugates should give access to these important molecules to evaluate their potential. The polysialyltransferases from both Neisseria meningitidis and Escherichia coli were cloned and expressed as recombinant proteins in E. coli. We have used synthetic acceptors to probe the acceptor requirement of these enzymes and to examine the basic enzymology. The minimum number of sialic acid residues (Neu5Ac) on the acceptor for activity in vitro was shown to be 2 for both enzymes, but a large increase in activity was seen if the acceptor had three Neu5Ac residues. The polysialyltransferase from N. meningitidis generated longer reaction products than the enzyme from E. coli on FCHASE acceptors. Examination of the products showed them to be a heterogeneous mixture, but products with >50 Neu5Ac residues could be seen using capillary zone electrophoresis analyses. In addition we made fusion proteins of these polysialyltransferase enzymes with the bifunctional alpha-2,3/alpha-2,8-sialyltransferase from Campylobacter jejuni to create self priming polysialyltransferases. These bifunctional sialyltransferases utilized various synthetic disaccharide acceptors with a terminal galactose, and we demonstrate here that the PST enzyme from N. meningitidis and its fusion protein with the C. jejuni sialyltransferase can be used to create polysialic acid on O-linked glycopeptides. 相似文献
4.
Characterization of the DNA methylase activity of the restriction enzyme from Escherichia coli K 总被引:6,自引:0,他引:6
The restriction endonuclease from Escherichia coli K is a multifunctional protein which efficiently methylates heteroduplex DNA (one strand modified and one strand unmodified) in the presence of S-adenosylmethionine (AdoMet), ATP, and Mg2+. The methylase activity is catalytic, and seems to modify different heteroduplex host specificity sites for E. coli K with equal efficiency. In the methylase reaction, both AdoMet and ATP (or its imido analog) act as allosteric effectors, but AdoMet also serves as a methyl donor. Preincubation of the enzyme with AdoMet eliminates the lag period observed in DNA methylation. The rate of enzyme activation was determined using the AdoMet analog Sinefungin. The result are consistent with the hypothesis that the early steps of AdoMet binding and enzyme activation are common to both restriction and modification reactions. 相似文献
5.
The restriction enzyme from a restriction and modification-deficient strain of Escherichia coli K mutated in the modification gene (hsdM) has been purified using an in vitro complementation assay with a mutant restriction enzyme from a strain lacking only restriction. The restriction enzyme from the hsdM mutant lacks all of the activities that are associated with the wild type enzyme: binding of unmodified DNA to filters, cleavage, or methylation of unmodified DNA and ATP hydrolysis. It is shown that the enzyme from this hsdM mutant cannot bind S-adenosylmethionine, an allosteric effector in the restriction reaction. In the absence of enzyme activation by S-adenosylmethionine, no binding to unmodified DNA takes place. A comparison with other mutant restriction enzymes allows us to outline the biochemical role of the subunits of the E. coli K restriction endonuclease. 相似文献
6.
7.
Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products 总被引:15,自引:0,他引:15
The crystal structure of Escherichia coli phosphofructokinase complexed with its reaction products fructose 1,6-bisphosphate (Fru1,6P) and ADP/Mg2+, and the allosteric activator ADP/Mg2+, has been determined at 2.4 A resolution. The structure was solved by molecular replacement using the known structure of Bacillus stearothermophilus phosphofructokinase, and has been refined to a crystallographic R-factor of 0.165 for all data. The crystallization mixture contained the substrate fructose 6-phosphate, but the electron density maps showed clearly the presence of the product fructose 1,6-bisphosphate, presumably formed by the enzyme reaction with contaminating ATP. The crystal consists of tetrameric molecules with subunits in two different conformations despite their chemical identity. The magnesium ion in the "closed" subunit bridges the phosphate groups of the two products. In the "open" subunit, the products are about 1.5 A further apart, with the Mg2+ bound only to ADP. These two conformations probably represent two successive stages along the reaction pathway, in which the closure of the subunit is required to bring the substrates sufficiently close to react. This conformational change within the subunit is distinct from the quaternary structure change seen previously in the inactive T-state conformation. It is probably not involved in the co-operativity or allosteric control of the enzyme, since the co-operative product fructose 1,6-bisphosphate is not moved, nor are the subunit interfaces changed. The structure of the enzyme is similar to that of B. stearothermophilus phosphofructokinase, and confirms the location of the sites for the two reaction products (or substrates), and of the effector site binding the activator ADP/Mg2+. However, this structure gives a clearer picture of the active site, and of the interactions between the enzyme and its reaction products. 相似文献
8.
Escherichia coli Bos-12 synthesizes a heteropolymer of sialic acids with alternating alpha-2,9/alpha-2,8 glycosidic linkages (1). In this study, we have shown that the polysialyltransferase of the E. coli Bos-12 recognizes an alpha-2,8 glycosidic linkage of sialic acid at the nonreducing end of an exogenous acceptor of either the alpha-2,8 homopolymer of sialic acid or the alternating alpha-2,9/alpha-2,8 heteropolymer of sialic acid and catalyzes the transfer of Neu5Ac from CMP-Neu5Ac to this residue. When the exogenous acceptor is an alpha-2,8-linked oligomer of sialic acid, the main product synthesized is derived from the addition of a single residue of [14C]Neu5Ac to form either an alpha-2,8 glycosidic linkage or an alpha-2,9 glycosidic linkage at the nonreducing end, at an alpha-2, 8/alpha-2,9 ratio of approximately 2:1. When the acceptor is the alternating alpha-2,9/alpha-2,8 heteropolymer of sialic acid, chain elongation takes place four to five times more efficiently than the alpha-2,8-linked homopolymer of sialic acid as an acceptor. It was found that the alpha-2,9-linked homopolymer of sialic acid and the alpha-2,8/alpha-2,9-linked hetero-oligomer of sialic acid with alpha-2,9 at the nonreducing end not only failed to serve as an acceptor for the E. coli Bos-12 polysialyltransferase for the transfer of [14C]Neu5Ac, but they inhibited the de novo synthesis of polysialic acid catalyzed by this enzyme. The results obtained in this study favor the proposal that the biosynthesis of the alpha-2, 9/alpha-2,8 heteropolymer of sialic acid catalyzed by the E. coli Bos-12 polysialyltransferase involves a successive transfer of a preformed alpha-2,8-linked dimer of sialic acid at the nonreducing terminus of the acceptor to form an alpha-2,9 glycosidic linkage between the incoming dimer and the acceptor. The glycosidic linkage at the nonreducing end of the alternating alpha-2,9/alpha-2,8 heteropolymer of sialic acid produced by E. coli Bos-12 should be an alpha-2,8 glycosidic bond and not an alpha-2,9 glycosidic linkage. 相似文献
9.
Escherichia coli K Bacteriophages I. Isolation and Introductory Characterization of Five Escherichia coli K Bacteriophages 总被引:1,自引:6,他引:1 下载免费PDF全文
Stephan Stirm 《Journal of virology》1968,2(10):1107-1114
A set of five Escherichia coli K phages has been isolated. These phages are adsorbed to and lyse the capsular forms of the host bacteria, whereas their spontaneous, acapsular mutants are not affected. All host strains are heavily encapsulated test strains for E. coli K antigens of the thermostable A type and they readily segregate acapsular mutants. In four of the phage-host systems, all secondary growth obtained was found to be acapsular. When tested for host-range mutants on 38 strains of E. coli and Klebsiella, less than one mutant per 10(5) plaque-forming units was found. No cross-reacting neutralizing antibodies were obtained when rabbits were immunized with the K phages. The latent periods (between 16 and 30 min) and average burst sizes (between 145 and 580) were determined by one-step growth experiments. 相似文献
10.
The Escherichia coli ush gene has been subcloned and the coding sequence delineated using BAL31 nuclease digestion. Synthesis of proteins encoded by the ush gene have been examined in "maxicells"; two proteins are made, one of which corresponds in Mr (61000) to purified uridine diphosphoglucose hydrolase and the other, less abundant, has an Mr of 43 000. A deletion at the 3' end of the gene introduced by restriction endonuclease digestion, results in the synthesis of a truncated protein of the expected Mr of about 43 000. Precursors of all these proteins are observed in maxicells under conditions known to inhibit processing of secreted proteins. Whereas the precursor of the major ush-encoded protein is retained in the cytoplasm-plus-membrane fraction, unexpectedly the precursor of the truncated protein is secreted. The mature forms of both the normal and truncated proteins are secreted. 相似文献
11.
Proline dehydrogenase from Escherichia coli K12. Properties of the membrane-associated enzyme 总被引:4,自引:0,他引:4
J L Abrahamson L G Baker J T Stephenson J M Wood 《European journal of biochemistry》1983,134(1):77-82
The pattern of protein synthesis in hepatoma cell clones was analysed by two-dimensional separation of [35S]methionine-labelled proteins. The clones were derived from the differentiated Reuber H 35 hepatoma and showed differences in the expression of a number of liver-specific functions and the resistance to the growth-inhibitory effect of glucocorticoids. Five protein spots were observed in the extracts of the differentiated Faza 967 cells that were absent from the electrophoretogram of the dedifferentiated H 56 cells. This clone, on the other hand, displayed six spots absent from Faza 967 cells. The growth of both Faza 967 and H 56 cells was strongly inhibited by 1 microM dexamethasone. The dexamethasone-resistant clone 2, a dedifferentiated derivative of Faza 967 cells, synthesized two polypeptides that were not present in Faza 967 or H 56 cells and produced four polypeptides at a lower level than Faza 967 cells. The examination of the short-term effect of dexamethasone on protein synthesis in Faza 967 cells revealed nine induced and one repressed protein spots, which appeared to be in good agreement with earlier published data. It is concluded that dedifferentiation, although bringing about marked changes in certain liver-specific functions, such as enzyme activities or protein secretion, affects only a relatively small fraction of the genes expressed. 相似文献
12.
The various [35S]DNA-binding proteins present in lysates of Escherichia coli K 12 cells have been analyzed by means of two-dimensional SDS-polyacrylamide gel electrophoresis. The proteins were isolated by the DNA-cellulose technique and eluted by increasing concentrations of NaCl (0.15, 0.4, 0.6 and 2 M). Only 2% of the total 35S radioactivity in the lysate became bound to the DNA-cellulose column. A total of 237 polypeptides were detected and the distribution among the salt eluates were 85, 83, 40 and 29 polypeptides, respectively. The 40 major polypeptides with regard to concentrations were also identified from gels stained with a protein-specific reagent. The polypeptides could be divided into two main groups according to pI values, namely, acidic polypeptides (total number, 174) and basic polypeptides (total number, 63). The ratio between acidic and basic polypeptides decreased with increasing salt concentrations in the eluates. The majority of the basic polypeptides had molecular weights in the range 10 000-30 000, whereas the acidic polypeptides had molecular weights from 10 000 to 165 000. 相似文献
13.
14.
15.
Purification and characterization of GlcNAc-6-P 2-epimerase from Escherichia coli K92 总被引:1,自引:0,他引:1
Ferrero MA Martínez-Blanco H Lopez-Velasco FF Ezquerro-Sáenz C Navasa N Lozano S Rodríguez-Aparicio LB 《Acta biochimica Polonica》2007,54(2):387-399
N-Acetylmannosamine (ManNAc) is the first committed intermediate in sialic acid metabolism. Thus, the mechanisms that control intracellular ManNAc levels are important regulators of sialic acid production. In prokaryotic organisms, UDP-N-acetylglucosamine (GlcNAc) 2-epimerase and GlcNAc-6-P 2-epimerase are two enzymes capable of generating ManNAc from UDP-GlcNAc and GlcNAc-6-P, respectively. We have purified for the first time native GlcNAc-6-P 2-epimerase from bacterial source to apparent homogeneity (1 200 fold) using Butyl-agarose, DEAE-FPLC and Mannose-6-P-agarose chromatography. By SDS/PAGE the pure enzyme showed a molecular mass of 38.4 +/- 0.2 kDa. The maximum activity was achieved at pH 7.8 and 37 degrees C. Under these conditions, the K(m) calculated for GlcNAc-6-P was 1.5 mM. The 2-epimerase activity was activated by Na(+) and inhibited by mannose-6-P but not mannose-1-P. Genetic analysis revealed high homology with bacterial isomerases. GlcNAc-6-P 2-epimerase from E. coli K92 is a ManNAc-inducible protein and is detected from the early logarithmic phase of growth. Our results indicate that, unlike UDP-GlcNAc 2-epimerase, which promotes the biosynthesis of sialic acid, GlcNAc-6-P 2-epimerase plays a catabolic role. When E. coli grows using ManNAc as a carbon source, this enzyme converts the intracellular ManNAc-6-P generated into GlcNAc-6-P, diverting the metabolic flux of ManNAc to GlcNAc. 相似文献
16.
盐芥ThMSD基因在大肠杆菌中的表达及特性研究 总被引:1,自引:0,他引:1
超氧化物歧化酶(SODs)是真核生物中广泛存在的含金属抗氧化酶,包括Cu/Zn-SOD、Mn-SOD和Fe-SOD 3种.植物线粒体中的Mn-SOD在植物抗逆中发挥重要作用.ThMSD是前期工作中从极度抗逆植物盐芥中克隆到的Mn-SOD编码基因.将ThMSD连接到原核表达载体pET30a(+),转化到BL21,获得重组菌BL21(pET30a-ThMSD).SDS-PAGE分析表明,重组菌在32kDa处有明显的诱导条带,与理论大小一致.Western blotting分析表明,诱导的条带能和抗His标签的单克隆抗体发生特异性反应.对3个重组子的可溶性全蛋白进行SOD活性分析,发现均高于空白对照菌.选择能大量表达ThMSD的重组子进行大量诱导表达,通过镍亲和层析纯化目的蛋白.对纯化的ThMSD重组蛋白进行热稳定性分析,结果表明,55℃下ThMSD仍有50%以上活性,42℃处理40 min后仍保持60%以上活性.在重组菌BL21(pET30a-ThMSD)对NaCl的抗性分析实验中,当培养基中盐浓度高于正常值时,在所测定阶段重组菌的生长速度均高于对照菌.可见,经原核表达的重组蛋白ThMSD具有较强的SOD活性及热稳定性,表达ThMSD基因的BL21菌株提高了对NaCl的耐受力.推测盐芥ThMSD基因与盐芥极强的抗逆性有密切联系. 相似文献
17.
Several different strains of Escherichia coli were grown on a variety of carbon sources under various growth conditions. Lactose was added (usually at mid-log phase), and the concentrations of the products of beta-galactosidase action on this sugar (galactose, glucose, and allolactose) were determined at various times thereafter in the total culture and in the medium. It was found that with each strain, with all carbon sources, and under all of the conditions studied, a very large proportion of the products were found in the medium. Control studies were carried out which showed that these results were not artifacts of the method of separating the cells from the medium. The results also did not arise from the secretion of beta-galactosidase into the medium, from the diffusion of substrates and products into and out of the cells due to leaks in the membrane, or from faults in the method of sugar analysis. In addition, the results showed that there were very high levels of products inside the cells under the conditions used and that the efflux of the products was rapid. The efflux might be energetically advantageous to the cell as well as being a means of storing excess products until needed. 相似文献
18.
Previous reports implicate UDPglucose as an active glucosyl donor for the unprimed reaction and “glucoprotein” formation in glycogen biosynthesis in Escherichia coli. Results presented here indicate that UDPglucose and GDPglucose are glucosyl donors in the primed and unprimed reactions catalyzed by purified E. coli B glycogen synthase at less than 5% the rate observed when ADPglucose is the donor. The unprimed reaction is stimulated by 0.25 m citrate and a high molecular weight product is formed similar to that produced when ADPglucose is the glucosyl donor. Physiological amounts of branching enzyme and high concentrations of glycogen inhibit transfer from UDPglucose and GDPglucose. In addition, transfer from UDPglucose is inhibited by ADPglucose. These results strongly suggest that ADPglucose is the physiological donor in both the primed and unprimed reactions. Furthermore, these and previously reported results suggest that one enzyme is involved in the catalysis of the primed, unprimed, and TCA-insoluble product formation reactions. Antiserum prepared against purified E. coli B glycogen synthase inactivates transfer of glucose from either ADPglucose or UDPglucose in the above reactions catalyzed by E. coli B crude extracts. Purified E. coli B glycogen synthase preparations contain significant amounts of α-glucan primer. Evidence shows that this glucan is not covalently attached to the enzyme. Results presented show that formation of material insoluble in TCA and previously considered to be due to “glucoprotein” formation, is in fact due to the generation of long chain length glucan molecules intrinsically acid insoluble. The data suggest that previous results purported to be de novo synthesis of glycogen are due to glucan associated with the glycogen synthase and not to formation of a “glucoprotein” intermediate which then acts as primer for further oligosaccharide synthesis. 相似文献
19.
Primary sequence of the glucanase gene from Oerskovia xanthineolytica. Expression and purification of the enzyme from Escherichia coli 总被引:14,自引:0,他引:14
S H Shen P Chrétien L Bastien S N Slilaty 《The Journal of biological chemistry》1991,266(2):1058-1063
A 2.7-kilobase fragment of DNA from Oerskovia xanthineolytica containing the gene for a beta-1,3-glucanase has been isolated and its complete nucleotide sequence determined. The sequence was found to contain two large open reading frames. Purification of the mature native enzyme and subsequent amino-terminal sequencing defined the glucanase gene in one reading frame which potentially encodes a protein of 548 amino acids. We have expressed this glucanase gene in Escherichia coli under control of the lacUV5 promoter and found the product to be secreted into the periplasm as a mature enzyme of about the same molecular weight as that of the native protein. The recombinant enzyme was purified to near homogeneity by a single step of high performance liquid chromatography. The ability of the recombinant enzyme to digest beta-glucan substrates and to lyse viable yeast cells was found to be indistinguishable from that of the native protein. Deletion of the cysteine-rich carboxyl-terminal 117 amino acids of the enzyme, which also contain two duplicated segments, abolished the lytic activity but did not significantly affect the glucanase function of the protein. The possible involvement of this domain in interaction with the yeast cell wall is discussed. 相似文献
20.
磷脂酰丝氨酸合成酶基因pss的克隆与表达 总被引:1,自引:0,他引:1
磷脂酰丝氨酸合成酶能催化转酯反应,是定向合成特定磷脂类物质特别是磷脂酰丝氨酸的工具酶,但出发菌株产量低,很大程度上限制了酶法合成磷脂酰丝氨酸的工业化应用。利用表达载体pET-22b,实现了大肠杆菌磷脂酰丝氨酸合成酶基因在大肠杆菌BL21(DE3)中的同源高效表达。利用镍亲和柱对表达产物进行纯化,并用HPLC法对纯化后的重组酶的活力进行检测。结果表明,目的蛋白可在短时间内进行大量表达,蛋白含量是出发菌株的100倍,同时经6h的转酯反应转化率达到33%,重组磷脂酰丝氨酸合成酶活力达到69U/mg蛋白。 相似文献