首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
alpha-Actinins from striated muscle, smooth muscle, and nonmuscle cells are distinctive in their primary structure and Ca2+ sensitivity for the binding to F-actin. We isolated alpha-actinin cDNA clones from a cDNA library constructed from poly(A)+ RNA of embryonic chicken skeletal muscle. The amino acid sequence deduced from the nucleotide sequence of these cDNAs was identical to that of adult chicken skeletal muscle alpha-actinin. To examine whether the differences in the structure and Ca2+ sensitivity of alpha-actinin molecules from various tissues are responsible for their tissue-specific localization, the cDNA cloned into a mammarian expression vector was transfected into cell lines of mouse fibroblasts and skeletal muscle myoblasts. Immunofluorescence microscopy located the exogenous alpha-actinin by use of an antibody specific for skeletal muscle alpha-actinin. When the protein was expressed at moderate levels, it coexisted with endogenous alpha-actinin in microfilament bundles in the fibroblasts or myoblasts and in Z-bands of sarcomeres in the myotubes. These results indicate that Ca2+ sensitivity or insensitivity of the molecules does not determine the tissue-specific localization. In the cells expressing high levels of the exogenous protein, however, the protein was diffusely present and few microfilament bundles were found. Transfection with cDNAs deleted in their 3' portions showed that the expressed truncated proteins, which contained the actin-binding domain but lacked the domain responsible for dimerization, were able to localize, though less efficiently in microfilament bundles. Thus, dimer formation is not essential for alpha-actinin molecules to bind to microfilaments.  相似文献   

2.
Isolation and characterization of a cDNA encoding a chick alpha-actinin   总被引:7,自引:0,他引:7  
We have isolated and sequenced a 2.1-kilobase cDNA encoding 86% of the sequence of alpha-actinin. The cDNA clone was isolated from a chick embryo fibroblast cDNA library constructed in the expression vector lambda gt11. Identification of this sequence as alpha-actinin was confirmed by immunological methods and by comparing the deduced protein sequence with the sequence of several CNBr fragments obtained from adult chicken smooth muscle (gizzard) alpha-actinin. The deduced protein sequence shows two distinct domains, one of which consists of four repeats of approximately 120 amino acids. This region corresponds to a previously identified 50-kDa tryptic peptide involved in formation of the alpha-actinin dimer. The last 19 residues of C-terminal sequence display an homology with the so-called E-F hand of Ca2+-binding proteins. Hybridization analysis reveals only one size of mRNA (approximately 3.5 kilobases) in fibroblasts, but multiple bands in genomic cDNA.  相似文献   

3.
The complete 897-amino-acid sequence of chicken skeletal muscle alpha-actinin and the 856-amino-acid sequence (97% of the entire sequence) of chicken fibroblast alpha-actinin have been determined by cloning and sequencing the cDNAs. Genomic Southern analysis with the cDNA sequences shows that skeletal and fibroblast alpha-actinins are encoded by separate single-copy genes. RNA blot analyzes show that the skeletal alpha-actinin gene is expressed in the pectoralis muscle and that the fibroblast gene is expressed in the gizzard smooth muscle as well as in the fibroblast. The deduced skeletal alpha-actinin molecule has a calculated Mr of 104 x 10(3), and each alpha-actinin can be divided into three domains: (1) the NH2-terminal highly conserved actin-binding domain, which shows similarity to the product of the Duchenne's muscular dystrophy locus; (2) the middle rod-shaped dimer-forming domain, which contains the spectrin-type repeat units; and (3) the COOH-terminal two EF-hand consensus regions. Comparison of the skeletal alpha-actinin sequence with the fibroblast and smooth muscle alpha-actinin sequences demonstrated that the EF-hand structure was conserved in all of these alpha-actinin sequences, despite the reported variability of the Ca2+ sensitivities of the actin-gelation by various alpha-actinin isoforms.  相似文献   

4.
A chick-embryo fibroblast lambda gt11 cDNA library was screened with affinity-purified antibodies to chick gizzard vinculin. One recombinant was purified to homogeneity and the fusion protein expressed in Escherichia coli strain C600. The fusion protein was unstable, but polypeptides that reacted with vinculin antibodies, but not non-immune immunoglobulin, were detected by Western blotting. The recombinant contained a single EcoRI fragment of 2891 bp with a single open reading frame. The deduced protein sequence could be aligned with that of six CNBr-cleavage peptides and two tryptic peptides derived from chicken gizzard vinculin. AUG-247 has tentatively been identified as the initiation codon, as it is contained within the consensus sequence for initiation sites of higher eukaryotes. The cDNA lacks 3' sequence and encodes 74% of the vinculin sequence, presuming the molecular mass of vinculin to be 130,000 Da. Analysis of the deduced sequence showed no homologies with other protein sequences, but it does display a triple internal repeat of 112 amino acid residues covering residues 259-589. The sequences surrounding the seven tyrosine residues in the available sequence were aligned with the tyrosine autophosphorylation consensus sequence found in protein tyrosine kinases. Tyr-822 showed a good match to this consensus, and may represent one of the two major sites of tyrosine phosphorylation by pp60v-sre. Northern blots showed that the 2.89 kb vinculin cDNA hybridized to one size of mRNA (approx. 7 kb) in chick-embryo fibroblasts, chick smooth muscle and chick skeletal muscle. Southern blots revealed multiple hybridizing bands in genomic DNA.  相似文献   

5.
cDNA cloning was used to deduce the complete amino acid sequence of canine cardiac calsequestrin, the principal Ca2+-binding protein of cardiac junctional sarcoplasmic reticulum. Cardiac calsequestrin contains 391 amino acid residues plus a 19-residue amino-terminal signal sequence. The molecular weight of the mature protein, excluding carbohydrate, is 45,269. Cardiac calsequestrin is highly acidic, and a striking feature is the enrichment of acidic residues (60%) within the 63 carboxyl-terminal residues. No part of the sequence contains EF hand Ca2+-binding structures. The photo-affinity probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine was used to localize the Ca2+-regulated hydrophobic site to amino acid residues 192-223. The cardiac and skeletal muscle isoforms of calsequestrin (Fliegel, L., Ohnishi, M., Carpenter, M. R., Khanna, V. K., Reithmeier, R. A. F., and MacLennan, D. H. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 1167-1171), although the products of different genes, are 65% identical, are acidic, and share one glycosylation site. However, cardiac calsequestrin has several unique features. First, it has a 31-amino acid extension at its carboxyl terminus (residues 361-391), which contains 71% acidic residues and a second glycosylation site. Second, its mRNA contains a second open reading frame with the capacity to code for a 111-amino acid protein. Third, contrary to the restricted expression of the fast skeletal isoform, cardiac calsequestrin mRNA is present in both cardiac and slow skeletal muscle, but not in fast skeletal muscle. We conclude that the deduced amino acid sequence of cardiac calsequestrin is consistent with its ability to bind large amounts of Ca2+ (40 mol of Ca2+/mol of calsequestrin). The protein probably binds Ca2+ by acting as a charged surface rather than by presenting multiple discrete Ca2+-binding sites.  相似文献   

6.
7.
We have isolated two cDNA clones for myosin alkali light chain (MLC) mRNA from two respective cDNA libraries of chick gizzard and fibroblast cells by cross-hybridization to the previously isolated cDNA of skeletal muscle MLC. Sequence analysis of the two cloned cDNAs revealed that both of them are homologous to but distinct from the cDNA sequence used as the probe so that they may be classified into members of the MLC family, that they are identical with each other in the 3' and 5' untranslated sequence as well as in the coding sequence with a notable exception of a 39-nucleotide insertion in the fibroblast cDNA, 26 nucleotides of which are used for encoding the C-terminal amino acid sequence, and, therefore, that they encode the identical 142-amino acid sequence with different C-terminals of nine amino acids, each specific for fibroblast and gizzard smooth muscle MLC. The position of the inserted block corresponds exactly to one of the exon-intron junctions in the other MLC genes whose structures have so far been elucidated. DNA blot analysis suggested that the two MLC mRNAs of gizzard (smooth muscle) and fibroblast cells (nonmuscle) are generated from a single gene, probably through alternative RNA splicing mechanisms. RNA blot analysis and S1 nuclease mapping analysis using RNA preparations from fibroblast and gizzard tissues showed that the fibroblast MLC mRNA is expressed predominantly in fibroblast cells, but not, or very scantily if at all, in the gizzard, whereas the reverse is true for the gizzard smooth muscle MLC mRNA.  相似文献   

8.
The binding of Ca2+ to troponin C (TnC) regulates skeletal muscle contraction. We have isolated a full-length cDNA clone for fast skeletal muscle TnC from a neonatal rabbit skeletal muscle library and determined its nucleic acid sequence. The amino acid sequence deduced from this clone matches the previously reported amino acid sequence (Collins, J. H., Greaser, M. L., Potter, J. D., and Horn, M. J. (1977) J. Biol. Chem. 252, 6356-6362) except at the amino terminus. According to the nucleotide sequence, the first 2 residues of TnC are threonine-aspartic acid, which is the reverse of the order reported previously. The isolation of the adult form of TnC from a neonatal library suggests that there may be no developmental isoforms of fast TnC. The protein coding region of the fast TnC clone has 67% homology with the reported nucleotide sequence for chicken slow TnC (Putkey, J. A., Carroll, S. L., and Means, A. R. (1987) Mol. Cell. Biol. 7, 549-1553). The homologies between the nucleotide sequences of TnC, calmodulin, and parvalbumin provide evidence that all three proteins were derived from a common precursor molecule which had four Ca2+-binding sites.  相似文献   

9.
10.
We have isolated and characterized cDNA clones from chicken cDNA libraries derived from skeletal muscle, body wall, and cultured fibroblasts. A clone isolated from a skeletal muscle cDNA library contains the complete protein-coding sequence of the 284-amino-acid skeletal muscle beta-tropomyosin together with 72 bases of 5' untranslated sequence and nearly the entire 3' untranslated region (about 660 bases), lacking only the last 4 bases and the poly(A) tail. A second clone, isolated from the fibroblast cDNA library, contains the complete protein-coding sequence of a 248-amino-acid fibroblast tropomyosin together with 77 bases of 5' untranslated sequence and 235 bases of 3' untranslated sequence through the poly(A) tract. The derived amino acid sequence from this clone exhibits only 82% homology with rat fibroblast tropomyosin 4 and 80% homology with human fibroblast tropomyosin TM30nm, indicating that this clone encodes a third 248-amino-acid tropomyosin isoform class. The protein product of this mRNA is fibroblast tropomyosin 3b, one of two low-molecular-weight isoforms expressed in chicken fibroblast cultures. Comparing the sequences of the skeletal muscle and fibroblast cDNAs with a previously characterized clone which encodes the smooth muscle alpha-tropomyosin reveals two regions of absolute homology, suggesting that these three clones were derived from the same gene by alternative RNA splicing.  相似文献   

11.
12.
Expression of a muscle-type alpha-actinin cDNA clone in non-muscle cells   总被引:4,自引:0,他引:4  
We have previously isolated a chick smooth muscle-type alpha-actinin cDNA clone (C17) from a chick embryo fibroblast cDNA library. As part of an investigation into a possible role for a muscle isoform of alpha-actinin in non-muscle cells, we have cloned C17 into a eucaryotic expression vector, pKCR3, and examined the distribution of the expressed protein in non-muscle, monkey COS cells. We report here that the muscle isoform of chick alpha-actinin encoded by C17, was found in focal contacts and periodically distributed along actin filaments.  相似文献   

13.
We have cloned and sequenced cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. The cDNA, 16,532 base pairs in length, encodes a protein of 4,969 amino acids with a Mr of 564,711. The deduced amino acid sequence is 66% identical with that of the skeletal muscle ryanodine receptor, but analysis of predicted secondary structures and hydropathy plots suggests that the two isoforms exhibit the same topology in both transmembrane and cytoplasmic domains. A potential ATP binding domain was identified at residues 2619-2652, a potential phosphorylation site at residue 2809, and potential calmodulin binding sites at residues 2775-2807, 2877-2898, and 2998-3016. We suggest that a modulator binding domain in the protein lies between residues 2619 and 3016. Northern blot analysis of mRNA from a variety of tissues demonstrated that the cardiac isoform is expressed in heart and brain, while the skeletal muscle isoform is expressed in both fast- and slow-twitch muscle. No ryanodine receptor mRNA was detected in extracts from smooth muscle or any other non-muscle tissue examined. The two receptors are clearly the products of separate genes, and the gene encoding the cardiac muscle ryanodine receptor was localized to chromosome 1.  相似文献   

14.
15.
Chick brain actin depolymerizing factor (ADF) is a 19-kDa protein that severs actin filaments and binds actin monomers. We have obtained a cDNA encoding ADF by screening a chick embryo lambda gt11 cDNA library with both a rabbit anti-ADF antiserum and two oligonucleotide probes. Several non-full-length clones of 636 bases and one full-length clone of 1886 bases were isolated and sequenced. The full-length cDNA encodes a protein of 165 amino acids with a calculated molecular weight of 18,520. The deduced amino acid sequence shows 73% identity with the porcine brain actin binding protein cofilin. The coding region of the ADF cDNA has been placed in an expression vector, and the resulting protein shows immunoreactivity with an anti-ADF antiserum but not with an anti-cofilin antibody. The expressed ADF has been purified and has an actin depolymerizing activity identical with that of brain ADF. Like cofilin, ADF contains a sequence similar to the nuclear transport signal sequence of the SV40 large T antigen and a calcium/calmodulin-dependent protein kinase II phosphorylation consensus sequence. Northern blots of both embryonic chick brain and muscle RNA revealed two ADF mRNAs of length 2.1 and 0.9 kilobases. Southern blots suggest that the ADF gene is present in a single copy within the chicken genome. ADF contains regions of homology with other actin binding proteins including tropomyosin, gelsolin, and depactin.  相似文献   

16.
17.
Here we describe the isolation and partial characterization of a new muscle-specific protein (Melusin) which interacts with the integrin cytoplasmic domain. The cDNA encoding Melusin was isolated in a two-hybrid screening of a rat neonatal heart library using beta(1)A and beta(1)D integrin cytoplasmic regions as baits. Melusin is a cysteine-rich cytoplasmic protein of 38 kDa, with a stretch of acidic amino acid residues at the extreme carboxyl-terminal end. In addition, putative binding sites for SH3 and SH2 domains are present in the amino-terminal half of the molecule. Chromosomic analysis showed that melusin gene maps at Xq12.1/13 in man and in the synthenic region X band D in mouse. Melusin is expressed in skeletal and cardiac muscles but not in smooth muscles or other tissues. Immunofluorescence analysis showed that Melusin is present in a costamere-like pattern consisting of two rows flanking alpha-actinin at Z line. Its expression is up-regulated during in vitro differentiation of the C2C12 murine myogenic cell line, and it is regulated during in vivo skeletal muscle development. A fragment corresponding to the tail region of Melusin interacted strongly and specifically with beta(1) integrin cytoplasmic domain in a two-hybrid test, but the full-length protein did not. Because the tail region of Melusin contains an acidic amino acid stretch resembling high capacity and low affinity calcium binding domains, we tested the possibility that Ca(2+) regulates Melusin-integrin association. In vitro binding experiments demonstrated that interaction of full-length Melusin with detergent-solubilized integrin heterodimers occurred only in absence of cations, suggesting that it can be regulated by intracellular signals affecting Ca(2+) concentration.  相似文献   

18.
The complete primary structure of a new extracellular protein associated with elastic fiber microfibrils was determined by recombinant DNA techniques. Antiserum to insoluble bovine ocular zonule protein was used to screen a lambda gt11 cDNA expression library constructed from whole chick embryo poly(A)+ RNA. The cDNAs encoding immunoreactive fusion polypeptides were then used to rescreen the library by plaque hybridization. Nucleotide sequencing of overlapping cDNA clones revealed an open translation reading frame of 1326 bases beginning at an initiation start sequence and ending at a stop codon. The contiguous cDNA sequence contains a 3'-untranslated region of 563 bases with a possible polyadenylation site 16 bases upstream from the poly(A) tail. Primer extension of chick aortic mRNA taken together with the sequence data, reveals a 5'-untranslated region of 95 bases extending upstream from the translation start site. Northern blot analyses indicated that the isolated cDNA hybridized with a 2.1-kilobase mRNA in preparations of whole chick embryo and chick embryonic aortic, heart, and muscle RNAs. The initial translation protein encoded by the cDNA is 53,932 kDa and possesses a hydrophilic amino acid composition with glutamic acid comprising 22% of the total amino acid residues. Antiserum was elicited to a synthetic peptide sequence (14 amino acids) encoded within the deduced protein primary structure. Western blots of extracted proteins from chick embryonic aortae cultured in the presence of beta-aminopropionitrile showed that the medium and a mild salt extract contained an immunoreactive protein possessing an apparent molecular mass of 58,000 whereas harsh denaturants extracted a 32,000-kDa protein. Pulse-chase experiments using radiolabeled lysine showed that the newly synthesized 58,000-kDa protein was chased into a 32,000-kDa protein within a 2-24-h period. Immunoelectron microscopy of tissue sections from chick aortae, bovine nuchal ligament, and human ocular zonules showed that the peptide-elicited antibody localized specifically to ultrastructurally definable microfibril structures.  相似文献   

19.
20.
The 53-kDa glycoprotein of rabbit skeletal muscle sarcoplasmic reticulum was purified by lentil lectin affinity chromatography and preparative polyacrylamide gel electrophoresis and partially sequenced. Polyclonal and monoclonal antibodies were raised against the 53-kDa glycoprotein and found to cross-react with the 160-kDa glycoprotein. A combination of antibody and synthetic oligonucleotide screening was used to isolate a cDNA encoding the 53-kDa glycoprotein of rabbit fast-twitch skeletal muscle sarcoplasmic reticulum. The cDNA encodes a protein of 453 amino acids with Mr of 52,421 and a 19-residue amino-terminal signal sequence. The deduced sequence contains two potential glycosylation sites and is largely hydrophilic. The presence of a glycine-rich sequence in the glycoprotein with homology to mononucleotide binding domains supports earlier observations that the glycoprotein binds ATP with high affinity. Although two sequences appear to be hydrophobic on a hydropathy plot, they are not sufficiently long nor sufficiently hydrophobic to qualify unambiguously as transmembrane sequences. The glycoprotein, like calsequestrin, was shown to be inaccessible to trypsin in intact sarcoplasmic reticulum. It can be eluted from the sarcoplasmic reticulum by extraction with [ethylenebis(oxyethylenenitrilo)]tetraacetic acid under hypotonic conditions. Thus, the glycoprotein appears to be localized entirely in the lumen of the sarcoplasmic reticulum and to be associated with the inner membrane surface through Ca2+-dependent mechanisms. Cotransfection of COS-1 cells with cDNAs encoding the glycoprotein and the Ca2+-ATPase led to expression of both proteins with a common localization in the microsomal fraction. The Ca2+ pumping activity of the microsomes isolated from transfected cells was unaltered by the presence of the glycoprotein. Thus the glycoprotein does not appear to modulate Ca2+-ATPase function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号