首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of Escherichia coli umuD gene products is upregulated as part of the SOS response to DNA damage. UmuD is initially produced as a 139-amino-acid protein, which subsequently cleaves off its N-terminal 24 amino acids in a reaction dependent on RecA/single-stranded DNA, giving UmuD′. The two forms of the umuD gene products play different roles in the cell. UmuD is implicated in a primitive DNA damage checkpoint and prevents DNA polymerase IV-dependent − 1 frameshift mutagenesis, while the cleaved form facilitates UmuC-dependent mutagenesis via formation of DNA polymerase V (UmuD′2C). Thus, the cleavage of UmuD is a crucial switch that regulates replication and mutagenesis via numerous protein-protein interactions. A UmuD variant, UmuD3A, which is noncleavable but is a partial biological mimic of the cleaved form UmuD′, has been identified. We used hydrogen-deuterium exchange mass spectrometry (HXMS) to probe the conformations of UmuD, UmuD′, and UmuD3A. In HXMS experiments, backbone amide hydrogens that are solvent accessible or not involved in hydrogen bonding become labeled with deuterium over time. Our HXMS results reveal that the N-terminal arm of UmuD, which is truncated in the cleaved form UmuD′, is dynamic. Residues that are likely to contact the N-terminal arm show more deuterium exchange in UmuD′ and UmuD3A than in UmuD. These observations suggest that noncleavable UmuD3A mimics the cleaved form UmuD′ because, in both cases, the arms are relatively unbound from the globular domain. Gas-phase hydrogen exchange experiments, which specifically probe the exchange of side-chain hydrogens and are carried out on shorter timescales than solution experiments, show that UmuD′ incorporates more deuterium than either UmuD or UmuD3A. This work indicates that these three forms of the UmuD gene products are highly flexible, which is of critical importance for their many protein interactions.  相似文献   

2.
The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli, a process that results from a translesion synthesis mechanism. The UmuD protein is activated for its role in mutagenesis by a RecA-facilitated autodigestion that removes the N-terminal 24 amino acids. A previous genetic screen for nonmutable umuD mutants had resulted in the isolation of a set of missense mutants that produced UmuD proteins that were deficient in RecA-mediated cleavage (J. R. Battista, T. Ohta, T. Nohmi, W. Sun, and G. C. Walker, Proc. Natl. Acad. Sci. USA 87:7190–7194, 1990). To identify elements of the UmuD′ protein necessary for its role in translesion synthesis, we began with umuD′, a modified form of the umuD gene that directly encodes the UmuD′ protein, and obtained missense umuD′ mutants deficient in UV and methyl methanesulfonate mutagenesis. The D39G, L40R, and T51I mutations affect residues located at the UmuD′2 homodimer interface and interfere with homodimer formation in vivo. The D75A mutation affects a highly conserved residue located at one end of the central strand in a three-stranded β-sheet and appears to interfere with UmuD′2 homodimer formation indirectly by affecting the structure of the UmuD′ monomer. When expressed from a multicopy plasmid, the L40R umuD′ mutant gene exhibited a dominant negative effect on a chromosomal umuD+ gene with respect to UV mutagenesis, suggesting that the mutation has an effect on UmuD′ function that goes beyond its impairment of homodimer formation. The G129D mutation affects a highly conserved residue that lies at the end of the long C-terminal β-strand and results in a mutant UmuD′ protein that exhibits a strongly dominant negative effect on UV mutagenesis in a umuD+ strain. The A30V and E35K mutations alter residues in the N-terminal arms of the UmuD′2 homodimer, which are mobile in solution.  相似文献   

3.
Although it has been 10 years since the discovery that the Escherichia coli UmuD protein undergoes a RecA-mediated cleavage reaction to generate mutagenically active UmuD′, the function of UmuD′ has yet to be determined. In an attempt to elucidate the role of UmuD′ in SOS mutagenesis, we have utilized a colorimetric papillation assay to screen for mutants of a hydroxylamine-treated, low-copy-number umuD′ plasmid that are unable to promote SOS-dependent spontaneous mutagenesis. Using such an approach, we have identified 14 independent umuD′ mutants. Analysis of these mutants revealed that two resulted from promoter changes which reduced the expression of wild-type UmuD′, three were nonsense mutations that resulted in a truncated UmuD′ protein, and the remaining nine were missense alterations. In addition to the hydroxylamine-generated mutants, we have subcloned the mutations found in three chromosomal umuD1, umuD44, and umuD77 alleles into umuD′. All 17 umuD′ mutants resulted in lower levels of SOS-dependent spontaneous mutagenesis but varied in the extent to which they promoted methyl methanesulfonate-induced mutagenesis. We have attempted to correlate these phenotypes with the potential effect of each mutation on the recently described structure of UmuD′.  相似文献   

4.
5.
6.
Escherichia coli DinB (DNA polymerase IV) possesses an enzyme architecture resulting in specialized lesion bypass function and the potential for creating −1 frameshifts in homopolymeric nucleotide runs. We have previously shown that the mutagenic potential of DinB is regulated by the DNA damage response protein UmuD2. In the current study, we employ a pre-steady-state fluorescence approach to gain a mechanistic understanding of DinB regulation by UmuD2. Our results suggest that DinB, like its mammalian and archaeal orthologs, uses a template slippage mechanism to create single base deletions on homopolymeric runs. With 2-aminopurine as a fluorescent reporter in the DNA substrate, the template slippage reaction results in a prechemistry fluorescence change that is inhibited by UmuD2. We propose a model in which DNA templates containing homopolymeric nucleotide runs, when bound to DinB, are in an equilibrium between non-slipped and slipped conformations. UmuD2, when bound to DinB, displaces the equilibrium in favor of the non-slipped conformation, thereby preventing frameshifting and potentially enhancing DinB activity on non-slipped substrates.  相似文献   

7.
8.
In response to environmentally caused DNA damage, SOS genes are up-regulated due to RecA-mediated relief of LexA repression. In Escherichia coli, the SOS umuDC operon is required for DNA damage checkpoint functions and for replicating damaged DNA in the error-prone process called SOS mutagenesis. In the model soil bacterium Acinetobacter baylyi strain ADP1, however, the content, regulation, and function of the umuDC operon are unusual. The umuC gene is incomplete, and a remnant of an ISEhe3-like transposase has replaced the middle 57% of the umuC coding region. The umuD open reading frame is intact, but it is 1.5 times the size of other umuD genes and has an extra 5′ region that lacks homology to known umuD genes. Analysis of a umuD::lacZ fusion showed that umuD was expressed at very high levels in both the absence and presence of mitomycin C and that this expression was not affected in a recA-deficient background. The umuD mutation did not affect the growth rate or survival after UV-induced DNA damage. However, the UmuD-like protein found in ADP1 (UmuDAb) was required for induction of an adjacent DNA damage-inducible gene, ddrR. The umuD mutation specifically reduced the DNA damage induction of the RecA-dependent DNA damage-inducible ddrR locus by 83% (from 12.9-fold to 2.3-fold induction), but it did not affect the 33.9-fold induction of benA, an unrelated benzoate degradation gene. These data suggest that the response of the ADP1 umuDC operon to DNA damage is unusual and that UmuDAb specifically regulates the expression of at least one DNA damage-inducible gene.  相似文献   

9.
By its functional interaction with a RecA polymer, the mutagenic UmuD′C complex possesses an antirecombination activity. We show here that MucA′B, a functional homolog of the UmuD′C complex, inhibits homologous recombination as well. In F recipients expressing MucA′B from a Ptac promoter, Hfr × F recombination decreased with increasing MucA′B concentrations down to 50-fold. In damage-induced pKM101-containing cells expressing MucA′B from the native promoter, recombination between a UV-damaged F lac plasmid and homologous chromosomal DNA decreased 10-fold. Overexpression of MucA′B together with UmuD′C resulted in a synergistic inhibition of recombination. RecA[UmuR] proteins, which are resistant to UmuD′C inhibition of recombination, are inhibited by MucA′B while promoting MucA′B-promoted mutagenesis efficiently. The data suggest that MucA′B and UmuD′C contact a RecA polymer at distinct sites. The MucA′B complex was more active than UmuD′C in promoting UV mutagenesis, yet it did not inhibit recombination more than UmuD′C does. The enhanced mutagenic potential of MucA′B may result from its inherent superior capacity to assist DNA polymerase in trans-lesion synthesis. In the course of this work, we found that the natural plasmid pKM101 expresses around 45,000 MucA and 13,000 MucB molecules per lexA(Def) cell devoid of LexA. These molecular Muc concentrations are far above those of the chromosomally encoded Umu counterparts. Plasmid pKM101 belongs to a family of broad-host-range conjugative plasmids. The elevated levels of the Muc proteins might be required for successful installation of pKM101-like plasmids into a variety of host cells.  相似文献   

10.
Glutathione S-transferase pi has been shown to reactivate 1-cysteine peroxiredoxin (1-Cys Prx) by formation of a complex [L.A. Ralat, Y. Manevich, A.B. Fisher, R.F. Colman, Biochemistry 45 (2006) 360-372]. A model of the complex was proposed based on the crystal structures of the two enzymes. We have now characterized the complex of GST pi/1-Cys Prx by determining the Mw of the complex, by measuring the catalytic activity of the GST pi monomer, and by identifying the interaction sites between GST pi and 1-Cys Prx. The Mw of the purified GST pi/1-Cys Prx complex is 50,200 at pH 8.0 in the presence of 2.5 mM glutathione, as measured by light scattering, providing direct evidence that the active complex is a heterodimer composed of equimolar amounts of the two proteins. In the presence of 4 M KBr, GST pi is dissociated to monomer and retains catalytic activity, but the Km value for GSH is increased substantially. To identify the peptides of GST pi that interact with 1-Cys Prx, GST pi was digested with V8 protease and the peptides were purified. The binding by 1-Cys Prx of each of four pure GST pi peptides (residues 41-85, 115-124, 131-163, and 164-197) was investigated by protein fluorescence titration. An apparent stoichiometry of 1 mol/subunit 1-Cys Prx was measured for each peptide and the formation of the heterodimer is decreased when these peptides are included in the incubation mixture. These results support our proposed model of the heterodimer.  相似文献   

11.
Zinc finger nucleases (ZFNs) are powerful tools for gene therapy and genetic engineering. The high specificity and affinity of these chimeric enzymes are based on custom-designed zinc finger proteins (ZFPs). To improve the performance of existing ZFN technology, we developed an in vivo evolution-based approach to improve the efficacy of the FokI cleavage domain (FCD). After multiple rounds of cycling mutagenesis and DNA shuffling, a more efficient nuclease variant (Sharkey) was generated. In vivo analyses indicated that Sharkey is > 15-fold more active than wild-type FCD on a diverse panel of cleavage sites. Further, a mammalian cell-based assay showed a three to sixfold improvement in targeted mutagenesis for ZFNs containing derivatives of the Sharkey cleavage domain. We also identified mutations that impart sequence specificity to the FCD that might be utilized in future studies to further refine ZFNs through cooperative specificity. In addition, Sharkey was observed to enhance the cleavage profiles of previously published and newly selected heterodimer ZFN architectures. This enhanced and highly efficient cleavage domain will aid in a variety of ZFN applications in medicine and biology.  相似文献   

12.
Summary The mucAB operon carried on plasmid pKM101, which is an analogue of the umuDC operon of Escherichia coli, is involved in UV mutagenesis and mutagenesis induced by many chemicals. Mutagenesis dependent on either the umuDC or mucAB operon requires the function of the recA gene and is called SOS mutagenesis. By treating the cell with agents that damage DNA, RecA protein is activated by conversion into a form (RecA*) that mediates proteolytic cleavage of the LexA repressor and derepresses the SOS genes including mucAB. Since UmuD protein is proteolytically processed to an active form (UmuD*) in a RecA*-dependent fashion, and MucA shares extensive amino acid homology with UmuD, we examined whether MucA is similarly processed in the cell, using antiserum against a LacZ-MucA fusion protein. Like UmuD, MucA protein is indeed proteolytically processed in a RecA*-dependent fashion. In recA430 strains, MucAB but not UmuDC can mediate UV mutagenesis. However, MucA was not processed in the recA430 cells treated with mitomycin C. We constructed, by site-directed mutagenesis, several mutant mucA genes that encode MucA proteins with alterations in the amino acids flanking the putative cleavage site (Ala25-Gly26). MucA(Cys25) was processed and was as mutagenically active as wild-type MucA; MucA(Asp26) and MucA(Cys25,Asp26) were not processed, and were mutagenically inactive; MucA-(Thr25) was not processed, but was mutagenically as active as wild-type MucA. The mutant mucA gene that encoded the putative cleavage product of MucA was as active as mucA + in UV mutagenesis. These results raise the possibility that both the nascent MucA and the processed product are active in mutagenesis.  相似文献   

13.
2-Keto-3-deoxygluconate-6P aldolase ofPseudomonas putida mediates exchange between hydrogen isotope at the methylene carbon of 2-ketobutyrate and water. This occurs with aK m of 20 mM, 100 times the corresponding value for pyruvate, and a Vmax approximating 1/710 that of KDPG cleavage. Ketobutyrate is competitive with both pyruvate and 2-keto-3-deoxygluconate-6P for the enzyme. In addition, there is no evidence for C-C synthesis between ketobutyrate andd-glyceraldehyde-3P. A comparison of relativeV/K values for hydrogen exchange shows pyruvate to be 17,600 times better as a substrate than ketobutyrate. The detritiation of [3-3H]ketobutyrate is stereochemically random. In addition, the reaction proceeds with ak H/k T isotope effect of 15.3, consistent with C-H bond turnover being rate-determining. The E-ketobutyrate complex is reductively trapped, inactivating the enzyme. Reductive inactivation kinetics of E-ketobutyrate compared to E-pyruvate suggests more of the complex may be partitioned to ketimine in the ketobutyrate case than in the pyruvate case. A mechanism is considered in which ketobutyrate is bound as a ketimine in an orientation such that the active site acid/basic group cannot mediate catalytic ketimine/eneamine interconversion. Thus, exchange would result from hydrogen ionization at C-3′ of the ketimine, a slow spontaneous step compared to overall complex turnover. This noncatalyzed deprotonation would explain dissymmetry in exchange, the poorV/K compared to pyruvate, and a large tritium isotope effect.  相似文献   

14.
Molecular Insights into Mammalian End-binding Protein Heterodimerization   总被引:1,自引:0,他引:1  
Microtubule plus-end tracking proteins (+TIPs) are involved in many microtubule-based processes. End binding (EB) proteins constitute a highly conserved family of +TIPs. They play a pivotal role in regulating microtubule dynamics and in the recruitment of diverse +TIPs to growing microtubule plus ends. Here we used a combination of methods to investigate the dimerization properties of the three human EB proteins EB1, EB2, and EB3. Based on Förster resonance energy transfer, we demonstrate that the C-terminal dimerization domains of EBs (EBc) can readily exchange their chains in solution. We further document that EB1c and EB3c preferentially form heterodimers, whereas EB2c does not participate significantly in the formation of heterotypic complexes. Measurements of the reaction thermodynamics and kinetics, homology modeling, and mutagenesis provide details of the molecular determinants of homo- versus heterodimer formation of EBc domains. Fluorescence spectroscopy and nuclear magnetic resonance studies in the presence of the cytoskeleton-associated protein-glycine-rich domains of either CLIP-170 or p150glued or of a fragment derived from the adenomatous polyposis coli tumor suppressor protein show that chain exchange of EBc domains can be controlled by binding partners. Extension of these studies of the EBc domains to full-length EBs demonstrate that heterodimer formation between EB1 and EB3, but not between EB2 and the other two EBs, occurs both in vitro and in cells as revealed by live cell imaging. Together, our data provide molecular insights for rationalizing the dominant negative control by C-terminal EB domains and form a basis for understanding the functional role of heterotypic chain exchange by EBs in cells.  相似文献   

15.
16.
BMP2/7异源二聚体调控CIZ的表达与自身活性的关系   总被引:1,自引:0,他引:1  
BMP2/7异源二聚体的活性显著高于BMP2同源二聚体,但其机制并不清楚。采用哺乳动物细胞表达的BMP2/7异源二聚体处理成骨细胞MC3T3-E1,细胞化学染色发现BMP2/7的活性显著高于BMP2,报告载体p3GC2-LUX检测发现BMP2/7能够明显上调BMP/Smad通路的活性(P<0.05)。但在成骨细胞中过表CIZ(Casinteracting zinc finger protein),能够显著抑制BMP2/7上调ALP与Osteocalcin的作用,并阻断BMP2/7对BMP/Smad通路的激活。同时发现BMP蛋白能够上调CIZ的表达,但BMP2/7的作用明显低于BMP2同源二聚体。可以认为BMP2/7能够诱导CIZ的表达,但由于作用较弱,所以对自身活性的反馈抑制作用也较弱,这可能是BMP2/7有着较强生物活性的关键所在。  相似文献   

17.
Heterodimer mutant reaction centers (RCs) of Blastochloris viridis were crystallized using microfluidic technology. In this mutant, a leucine residue replaced the histidine residue which had acted as a fifth ligand to the bacteriochlorophyll (BChl) of the primary electron donor dimer M site (HisM200). With the loss of the histidine-coordinated Mg, one bacteriochlorophyll of the special pair was converted into a bacteriopheophytin (BPhe), and the primary donor became a heterodimer supermolecule. The crystals had dimensions 400 × 100 × 100 μm, belonged to space group P43212, and were isomorphous to the ones reported earlier for the wild type (WT) strain. The structure was solved to a 2.5 Å resolution limit. Electron-density maps confirmed the replacement of the histidine residue and the absence of Mg. Structural changes in the heterodimer mutant RC relative to the WT included the absence of the water molecule that is typically positioned between the M side of the primary donor and the accessory BChl, a slight shift in the position of amino acids surrounding the site of the mutation, and the rotation of the M194 phenylalanine. The cytochrome subunit was anchored similarly as in the WT and had no detectable changes in its overall position. The highly conserved tyrosine L162, located between the primary donor and the highest potential heme C380, revealed only a minor deviation of its hydroxyl group. Concomitantly to modification of the BChl molecule, the redox potential of the heterodimer primary donor increased relative to that of the WT organism (772 mV vs. 517 mV). The availability of this heterodimer mutant and its crystal structure provides opportunities for investigating changes in light-induced electron transfer that reflect differences in redox cascades.  相似文献   

18.
19.
The light-induced action of 8-methoxypsoralen (8-MOP) on λ phage and plasmids yields monoadducts and interstrand crosslinks. The survival and clear plaque mutation frequency in the phage photosensitized with 8-MOP and irradiated with UV at wavelength >320 nm are increased when the wild-type host (Escherichia coli uvr +) is subjected to UV irradiation (wavelength = 254 nm) prior to phage inoculation. These phenomena are known as “W reactivation” and “W mutagenesis.” It is shown that 8-MOP monoadducts in λ DNA induce clear mutations in the phage inoculated to UV-irradiated excision repair mutants of E. coli only when the error-prone repair is performed by MucA 2 B, but not PolV (UmuD 2 C) polymerase. The efficiency of the SOS repair (W reactivation) of 8-MOP monoadducts in plasmid and λ phage DNA also only increases with the presence of pKM101 plasmid muc + in E. coli uvr ?.  相似文献   

20.
The composite alcohol dehydrogenase zymogram of sunflowers, Helianthus annuus, consists of 12 distinct bands. Genetic studies suggest that the slowest-moving three bands are allozymic dimers. They are controlled by a gene designated Adh 1 having two codominant alleles, Adh 1 F and Adh 1 S . The heterozygote produces three bands as expected with a dimer molecule, while the homozygotes produce but one band each, consisting of FF or SS homodimers. The genetic evidence is supported by dissociation-recombination experiments in which the homodimers were separated and allowed to rejoin as parental homodimers and the hybrid heterodimer. Adh 1 FS was found in only three of 422 cultivar seeds of one collection out of about 70 (over 6000 individual seeds tested) and was seen only infrequently in the seven wild collections examined. Adh 1 SS has never been found in the cultivar collections studied and but rarely in the wild populations sampled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号