首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identifying novel cancer biomarkers is important for early cancer detection as it can reduce mortality rates. The cancer secretome, the collection of all macromolecules secreted by a tumor cell, alters its composition compared to normal tissue, and this change plays an important role in the observation of cancer progression. The collection and accurate analysis of cancer secretomes could lead to the discovery of novel biomarkers, thus improving outcomes of cancer treatment. We unexpectedly discovered that enzyme-instructed self-assembly (EISA) of a D-peptide hydrogelator results in nanonets/hydrogel around cancer cells that overexpress ectophosphatases. Here we show that these nanonets are able to rapidly collect proteins in the pericellular space (i.e., near the surface) of cancer cells. Because the secretory substances are at their highest concentration near the cell surface, the use of pericellular nanonets to collect the cancer secretome maximizes the yield and quality of samples, reduces pre-analytical variations, and allows the dynamic profiling of secretome samples. Thus, this new approach has great potential in identifying the heterotypic signaling in tumor microenvironments thereby improving the understanding of tumor microenvironments and accelerating the discovery of potential biomarkers in cancer biology. Data are available via ProteomeXchange with identifier PXD003924.  相似文献   

2.
Stastna M  Van Eyk JE 《Proteomics》2012,12(4-5):722-735
The proteins secreted by various cells (the secretomes) are a potential rich source of biomarkers as they reflect various states of the cells at real time and at given conditions. To have accessible, sufficient and reliable protein markers is desirable as they mark various stages of disease development and their presence/absence can be used for diagnosis, prognosis, risk stratification and therapeutic monitoring. As direct analysis of blood/plasma, a common and noninvasive patient screening method, can be difficult for candidate protein biomarker identification, the alternative/complementary approaches are required, one of them is the analysis of secretomes in cell conditioned media in vitro. As the proteins secreted by cells as a response to various stimuli are most likely secreted into blood/plasma, the identification and pre-selection of candidate protein biomarkers from cell secretomes with subsequent validation of their presence at higher levels in serum/plasma is a promising approach. In this review, we discuss the proteins secreted by three progenitor cell types (smooth muscle, endothelial and cardiac progenitor cells) and two adult cell types (neonatal rat ventrical myocytes and smooth muscle cells) which can be relevant to cardiovascular research and which have been recently published in the literature. We found, at least for secretome studies included in this review, that secretomes of progenitor and adult cells overlap by 48% but the secretomes are very distinct among progenitor cell themselves as well as between adult cells. In addition, we compared secreted proteins to protein identifications listed in the Human Plasma PeptideAtlas and in two reports with cardiovascular-related proteins and we performed the extensive literature search to find if any of these secreted proteins were identified in a biomarker study. As expected, many proteins have been identified as biomarkers in cancer but 18 proteins (out of 62) have been tested as biomarkers in cardiovascular diseases as well.  相似文献   

3.
The high mortality rate in colorectal cancer is mostly ascribed to metastasis, but the only clinical biomarker available for disease monitoring and prognosis is the carcinoembryonic antigen (CEA). However, the prognostic utility of CEA remains controversial. In an effort to identify novel biomarkers that could be potentially translated for clinical use, we collected the secretomes from the colon adenocarcinoma cell line HCT‐116 and its metastatic derivative, E1, using the hollow fiber culture system, and utilized the multilectin affinity chromatography approach to enrich for the secreted glycoproteins (glyco‐secretome). The HCT‐116 and E1 glyco‐secretomes were compared using the label‐free quantitative SWATH‐MS technology, and a total of 149 glycoproteins were differentially secreted in E1 cells. Among these glycoproteins, laminin β‐1 (LAMB1), a glycoprotein not previously known to be secreted in colorectal cancer cells, was observed to be oversecreted in E1 cells. In addition, we showed that LAMB1 levels were significantly higher in colorectal cancer patient serum samples as compared to healthy controls when measured using ELISA. ROC analyses indicated that LAMB1 performed better than CEA at discriminating between colorectal cancer patients from controls. Moreover, the diagnostic performance was further improved when LAMB1 was used in combination with CEA.  相似文献   

4.
Luo X  Liu Y  Wang R  Hu H  Zeng R  Chen H 《Journal of Proteomics》2011,74(4):528-538
Cancer secretomes are a promising source for biomarker discovery. The analysis of cancer secretomes still faces some difficulties mainly related to the intracellular contamination, which hinders the qualification and follow-up validations. This study aimed to establish a high-quality secretome of A549 cells by using the cellular proteome as a reference and to test the merits of this refined secretome for biomarker discovery for non-small cell lung cancer (NSCLC). Using one-dimensional gel electrophoresis followed by liquid-chromatography tandem mass spectrometry, we comprehensively investigated the secretome and the concurrent cellular proteome of A549 cells. A high-quality secretome consisting of 382 proteins was refined from 889 initial secretory proteins. More than 85.3% of proteins were annotated as secreted and 76.8% as extracellular or membrane-bound. The discriminative power of the lung-cancer associated secretome was confirmed by gene expression and serum proteomic data. The elevated level of C4b-binding Protein (C4BP) in NSCLC blood was verified by enzyme-linked immunosorbent assays (ELISA, p = 6.07e-6). Moreover, the serum C4BP level in 89 patients showed a strong association with the clinical staging of NSCLC. Our reference-experiment-driven strategy is simple and widely applicable, and may facilitate the identification of novel promising biomarkers of lung cancer.  相似文献   

5.
In principle, targeted therapies have optimal activity against a specific subset of tumors that depend upon the targeted molecule or pathway for growth, survival, or metastasis. Consequently, it is important in drug development and clinical practice to have predictive biomarkers that can reliably identify patients who will benefit from a given therapy. We analyzed tumor cell-line secretomes (conditioned cell media) to look for predictive biomarkers; secretomes represent a potential source for potential biomarkers that are expressed in intracellular signaling and therefore may reflect changes induced by targeted therapy. Using Gene Ontology, we classified by function the secretome proteins of 12 tumor cell lines of different histotypes. Representations and hierarchical relationships among the functional groups differed among the cell lines. Using bioinformatics tools, we identified proteins involved in intracellular signaling pathways. For example, we found that secretome proteins related to TGF-beta signaling in thyroid cancer cells, such as vasorin, CD109, and βIG-H3 (TGFBI), were sensitive to RPI-1 and dasatinib treatments, which have been previously demonstrated to be effective in blocking cell proliferation. The secretome may be a valuable source of potential biomarkers for detecting cancer and measuring the effectiveness of cancer therapies.  相似文献   

6.
Glioblastoma multiforme (GBM) is the most aggressive among human gliomas with poor prognosis. Study of tumor cell secretome - proteins secreted by cancer cell lines, is a powerful approach to discover potential diagnostic or prognostic biomarkers. Here we report, for the first time, proteins secreted by three GBM cell lines, HNGC2, LN229 and U87MG. Analysis of the conditioned media of these cell lines by LC-MS/MS using ESI-IT mass spectrometer (LTQ) resulted in the confident identification of 102, 119 and 64 proteins, respectively. Integration of the results from all the three cell lines lead to a dataset of 148 non-redundant proteins. Subcellular classification using Genome Ontology indicated that 42% of the proteins identified belonged to extracellular or membrane proteins, viz. Vinculin, Tenascin XB, SERPIN F1 and TIMP-1. 52 proteins matched with the secretomes of 11 major cancer types reported earlier whereas remaining 96 are unique to our study. 25 protein identifications from the dataset represent proteins related to GBM or other cancer tissues as per Human Protein Atlas; at least 22 are detectable in plasma, 11 of them being reported even in cerebrospinal fluid. Our study thus provides a valuable resource of GBM cell secretome with potential for further investigation as GBM biomarkers.  相似文献   

7.
8.
The notion that skeletal muscle is a secretory organ capable to release proteins that can act locally in an autocrine/paracrine manner or even in an endocrine manner to communicate with distant tissues has now been recognized. Under this context, a new paradigm has arisen implicating the muscle in metabolism regulation. Considering the evidences that give exercise a protective role against illnesses associated to physical inactivity, it becomes of especial relevance to characterize muscle secreted proteins. In the present study we show for the first time the secretome characterization and the comparative 2-DE secretome analysis among fast-glycolytic (gastrocnemius) and slow-oxidative (soleus) rat muscle explants and its variation after exercise intervention. We have identified 19 differently secreted proteins when comparing soleus and gastrocnemius secretomes, and 10 in gastrocnemius and 17 in soleus distinctive secreted proteins after 1 week of endurance exercise training. Among identified proteins, DJ-1 was found to be more abundant in fast-glycolytic fiber secretomes. On the contrary, FABP-3 was elevated in slow-oxidative fiber secretomes, although its secretion from gastrocnemius muscle increased in exercised animals. These and other secreted proteins identified in this work may be considered as potential myokines.  相似文献   

9.
“Secretome” is referred to as the rich, complex set of molecules secreted from living cells. In a less strict definition frequently followed in “secretome” studies, the term also includes molecules shed from the surface of living cells. Proteins of secretome (will be referred to as secreted) play a key role in cell signaling, communication and migration. The need for developing more effective cancer biomarkers and therapeutic modalities has led to the study of cancer cell secretome as a means to identify and characterize diagnostic and prognostic markers and potential drug and therapeutic targets. Significant technological advances in the field of proteomics during the last two decades have greatly facilitated research towards this direction. Nevertheless, secretome analysis still faces some difficulties mainly related to sample collection and preparation. The goal of this article is to provide an overview of the main findings from the analysis of cancer cell secretome. Specifically, we focus on the presentation of main methodological approaches that have been developed for the study of secreted proteins and the results thereof from the analysis of secretome in different types of malignancies; special emphasis is given on correlation of findings with protein expression in body fluids.  相似文献   

10.
The secretome is the collection of all macromolecules secreted by a cell, and is a vital aspect of cell–cell communication in eukaryotes. In cancer, tumour cells often display secretomes with altered composition compared to the normal tissue from which they are derived. These changes can contribute to the acquisition and maintenance of the recognised hallmarks of cancer. In addition, evidence is emerging for a more sophisticated role for the tumour secretome in cancer, with significant implications for malignant disease progression. In this review, we highlight recent advances in our understanding of factors contributing to secretome alterations in cancer, including genetic mutations, microRNA-based regulation and the influence of the tumour microenvironment. The contribution of secreted factors in maintenance and function of cancer stem cells, and of tumour-derived factors in specification of a pre-metastatic niche are also discussed. Collectively, evidence from the current literature suggests that the tumour secretome, consisting of factors derived from cancer stem cells, non-stem cells and the surrounding stroma, plays a deterministic role in cancer progression, and may constitute a key therapeutic target in many cancers. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   

11.
Reliable methods for profiling secretory proteins are highly desirable for the identification of biomarkers of disease progression. Secreted proteins are often masked by high amounts of protein supplements in the culture medium. We have developed an efficient method for the enrichment and analysis of the secretome of different cancer cell lines, free of essential contaminants. The method is based on the optimization of cell incubation conditions in protein-free medium. Secreted proteins are concentrated and fractionated using a reversed-phase tC2 Sorbent, followed by peptide mass fingerprinting for protein identification. An average of 88 proteins were identified in each cancer cell line, of which more than 76% are known to be secreted, possess a signal peptide or a transmembrane domain. Given the importance of secreted proteins as a source for early detection and diagnosis of disease, this approach may help to discover novel candidate biomarkers with potential clinical significance.  相似文献   

12.
Wu CC  Chen HC  Chen SJ  Liu HP  Hsieh YY  Yu CJ  Tang R  Hsieh LL  Yu JS  Chang YS 《Proteomics》2008,8(2):316-332
The cancer cell secretome may contain many potentially useful biomarkers. We therefore sought to identify proteins in the conditioned media of colorectal carcinoma (CRC) cell lines but not in those from other cancer cell lines. The secretomes of 21 cancer cell lines derived from 12 cancer types were analyzed by SDS-PAGE combined with MALDI-TOF MS. Among the 325 proteins identified, collapsin response mediator protein-2 (CRMP-2) was chosen for evaluation as a potential CRC biomarker, since it was selectively detected in the CRC cell line secretome and has never been reported as a cancer biomarker. Immunohistochemical analysis of 169 CRC specimens showed that CRMP-2 was positively detected in 58.6% of the tumors, but weakly or not detected in >90% of the adjacent nontumor epithelial cells. Moreover, the CRMP-2-positive rate was significantly increased in earlier stage tumors and lymph node metastasis. Plasma CRMP-2 levels were significantly higher in CRC patients (N = 201) versus healthy controls (N = 201) (61.3 +/- 34.6 vs. 40.2 +/- 24.3 ng/mL, p = 0.001). Our results indicate that comparative analysis of cancer cell secretome is a feasible strategy for identifying potential cancer biomarkers, and that CRMP-2 may be a novel CRC biomarker.  相似文献   

13.
Despite major improvements on the knowledge and clinical management, cancer is still a deadly disease. Novel biomarkers for better cancer detection, diagnosis and treatment prediction are urgently needed. Proteins secreted, shed or leaking from the cancer cell, collectively termed the cancer secretome, are promising biomarkers since they might be detectable in blood or other biofluids. Furthermore, the cancer secretome in part represents the tumor microenvironment that plays a key role in tumor promoting processes such as angiogenesis and invasion. The cancer secretome, sampled as conditioned medium from cell lines, tumor/tissue interstitial fluid or tumor proximal body fluids, can be studied comprehensively by nanoLC-MS/MS-based approaches. Here, we outline the importance of current cancer secretome research and describe the mass spectrometry-based analysis of the secretome. Further, we provide an overview of cancer secretome research with a focus on the three most common cancer types: lung, breast and colorectal cancer. We conclude that the cancer secretome research field is a young, but rapidly evolving research field. Up to now, the focus has mainly been on the discovery of novel promising secreted cancer biomarker proteins. An interesting finding that merits attention is that in cancer unconventional secretion, e.g. via vesicles, seems increased. Refinement of current approaches and methods and progress in clinical validation of the current findings are vital in order to move towards applications in cancer management. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   

14.
Introduction: Cancer represents one of the major causes of human deaths. Identification of proteins as biomarkers for early detection of cancer and therapeutic targets for cancer treatment are important issues in precision medicine. Secretome of cancer cells represents the collection of proteins secreted or shed from cancer cells. Proteomic profiling of the cancer cell secretome has been proven to be a convenient and efficient way to discover cancer biomarker and/or therapeutic targets.

Areas covered: There have been numerous reviews describing the history and application of secretome analysis in cancer biomarker/therapeutic target research. The present review focuses on the technological advancement for profiling low-molecular-mass proteins in secretome, the latest information regarding the new candidate biomarkers and molecular mechanisms discovered on the basis of cancer cell secretome analysis, as well as the previously discovered candidate biomarkers that enter into clinical trials.

Expert commentary: Current technologies for protein sample preparation/separation and MS-based protein identification have allowed in-depth analysis of cancer cell secretome. Future efforts should focus on the comprehensiveness of cancer cell secretome, meta-analysis of different secretome datasets and integrated analysis via combining other omics datasets, as well as the incorporation of MS-based biomarker verification pipeline into both preclinical studies and clinical trials.  相似文献   


15.
《Fungal biology》2020,124(11):915-923
Secretome represents a main target for understanding the mechanisms of fungal adaptation. In the present study, we focus on the secretomes of fungi associated with infections in humans and other mammals in order to explore relationships between the diverse morphological and phylogenetic groups. Almost all the mammalian pathogenic fungi analyzed have secretome sizes smaller than 1000 proteins and, secreted proteins comprise between 5% and 10% of the total proteome. As expected, the correlation pattern between the secretome size and the total proteome was similar to that described in previous secretome studies of fungi. With regard to the morphological groups, minimum secretome sizes of less than 250 secreted proteins and low values for the fraction of secreted proteins are shown in mammalian pathogenic fungi with reduced proteomes such as microsporidia, atypical fungi and some species of yeasts and yeast-like fungi (Malassezia). On the other hand, filamentous fungi have significantly more secreted proteins and the highest numbers are present in species of filamentous fungi that also are plant or insect pathogens (Fusarium verticilloides, Fusarium oxysporum and Basidiobolus meristosporus). With respect to phylogeny, there are also variations in secretome size across fungal subphyla: Microsporidia, Taphrinomycotina, Ustilagomycotina and Saccharomycotina contain small secretomes; whereas larger secretomes are found in Agaricomycotina, Pezizomycotina, Mucoromycotina and Entomophthoromycotina. Finally, principal component analysis (PCA) was conducted on the complete secretomes. The PCA results revealed that, in general, secretomes of fungi belonging to the same morphological group or subphyla cluster together. In conclusion, our results point out that in medically important fungi there is a relationship between the secretome and the morphological group or phylogenetic classification.  相似文献   

16.
Cancer is among the most prevalent and serious health problems worldwide. Therefore, there is an urgent need for novel cancer biomarkers with high sensitivity and specificity for early detection and management of the disease. The cancer secretome, encompassing all the proteins that are secreted by cancer cells, is a promising source of biomarkers as the secreted proteins are most likely to enter the blood circulation. Moreover, since secreted proteins are responsible for signaling and communication with the tumor microenvironment, studying the cancer secretome would further the understanding of cancer biology. Latest developments in proteomics technologies have significantly advanced the study of the cancer secretome. In this review, we will present an overview of the secretome sample preparation process and summarize the data from recent secretome studies of six common cancers with high mortality (breast, colorectal, gastric, liver, lung and prostate cancers). In particular, we will focus on the various platforms that were employed and discuss the clinical applicability of the key findings in these studies. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   

17.
Proteins are released from cells by different secretory pathways. The secretory pathway via the ER-Golgi route - realized by a signal sequence - is referred to as “classical secretion”. In contrast, alternative secretory pathways were summarized as “unconventional protein secretion”. Until now, unconventional protein secretion was lacking attention due to the absence of detailed mechanistic insight and limited experimental access. However, there is a growing number of experimental data showing that a large proportion of secreted proteins is released by these alternative routes. Secretomics - the analysis of all secreted proteins of a cell population - offers the opportunity to gain more functional insight into unconventional protein secretion. Several pitfalls in secretome analysis starting with the analyzed cell model and sample preparation to data analysis have to be considered for detailed characterization of the secretome. Here, we highlight the investigation of secretomes by quantitative LC-MS/MS analysis and discuss pitfalls and opportunities in the characterization of unconventionally secreted proteins by secretome analysis.  相似文献   

18.
Surface, secreted and transmembrane protein-encoding open reading frames, collectively the secretome, can be identified in bacterial genome sequences using bioinformatics. However, functional analysis of translated secretomes is possible only if many secretome proteins are expressed and purified individually. We have now developed and applied a phage display system for direct selection, identification, expression and purification of bacterial secretome proteins.  相似文献   

19.
分泌蛋白质组是指在特定时间和特定条件下,由组织或细胞等分泌的全部蛋白质。在病原真菌与植物的相互作用过程中,病原真菌会分泌大量的蛋白质和代谢产物,在病原真菌对植物的侵入、定殖和扩展等致病过程中起着重要作用。本文主要介绍了分泌蛋白质在植物病原真菌致病性中的作用、重要植物病原真菌分泌蛋白质组的研究进展、及植物病原真菌分泌蛋白质组的生物信息学预测分析等,对于全面了解植物病原真菌的致病机理具有重要意义。  相似文献   

20.
Zhang Y  Tang X  Yao L  Chen K  Jia W  Hu X  Xu LX 《Proteomics》2012,12(1):32-36
Secreted proteins play important roles in physiological and pathological processes. However, effective proteomic detection of low-abundant secreted proteins is often shielded by the presence of a large amount of intracellular proteins released from unavoidable dead cells during cell culture. In the present study, we applied lectin affinity capture approach to enrich the secreted proteins in the conditioned media (CM) of three human breast cell lines (MCF-10A, MCF-7, and MDA-MB-231). Lectin capture showed efficient enrichment of the secreted proteins in CM of all three cell lines and significantly increased the number of secreted proteins detected: from 183 to 292 for MCF-10A, 196 to 325 for MCF-7, and 194 to 368 for MDA-MB-231. Based on more comprehensive profiling of the secreted proteins, we identified 92 secreted proteins which were both upregulated in MCF-7 and MDA-MB-231, with 82 only found in lectin-captured samples. It should be noted that among these 82 potential biomarkers, 59 were not reported in the previous proteomic studies of breast cancer. These data indicate that the lectin capture approach is a powerful means to move toward more comprehensive analysis and comparison of secretomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号