首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
二甲基巯基丙酸内盐(dimethylsulfoniopropionate,DMSP)是全球硫循环和碳循环的重要载体物质。海洋浮游植物、大型藻类和临海被子植物是DMSP的主要生产者。每年DMSP的产量可以达到1×10~9吨。在北大西洋表面的某些区域,DMSP的产量可以达到碳固定总量的10%。微生物介导的DMSP的裂解是全球硫循环和碳循环的重要步骤。目前,8种参与裂解DMSP的DMSP裂解酶已被报道。在已发现的8种DMSP裂解酶中,3种DMSP裂解酶的催化机制得到了研究和阐明。本文根据国内外研究成果,主要对DMSP裂解过程的酶促催化机制的研究进展进行综述,认为在今后工作中需要继续发现新的DMSP裂解酶,并进一步揭示海洋微生物裂解DMSP的分子机制。  相似文献   

2.
The kinetic behavior of the phosphotriesterase in the presence of organic amines (diethylamine, diisopropylamine, triethylamine, pyridine and others) capable of activating the enzyme at the concentration up to 0.10 M and inhibiting it at higher concentrations is described. The form acting as activator in a solution is the nonprotonated form of amines and the value of activation effect depends on pKa of amine and its structure. The activation by amines at the above concentrations has a noncompetitive character, whereas the inhibition at higher concentrations has competitive one. The mechanism of phosphotriesterase action in the presence of amines is discussed.  相似文献   

3.
The glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) is a highly promiscuous dinuclear metallohydrolase with respect to both substrate specificity and metal ion composition. While this promiscuity may adversely affect the enzyme's catalytic efficiency its ability to hydrolyse some organophosphates (OPs) and by-products of OP degradation have turned GpdQ into a promising candidate for bioremedial applications. Here, we investigated both metal ion binding and the effect of the metal ion composition on catalysis. The prevalent in vivo metal ion composition for GpdQ is proposed to be of the type Fe(II)Zn(II), a reflection of natural abundance rather than catalytic optimisation. The Fe(II) appears to have lower binding affinity than other divalent metal ions, and the catalytic efficiency of this mixed metal center is considerably smaller than that of Mn(II), Co(II) or Cd(II)-containing derivatives of GpdQ. Interestingly, metal ion replacements do not only affect catalytic efficiency but also the optimal pH range for the reaction, suggesting that different metal ion combinations may employ different mechanistic strategies. These metal ion-triggered modulations are likely to be mediated via an extensive hydrogen bond network that links the two metal ion binding sites via residues in the substrate binding pocket. The observed functional diversity may be the cause for the modest catalytic efficiency of wild-type GpdQ but may also be essential to enable the enzyme to evolve rapidly to alter substrate specificity and enhance kcat values, as has recently been demonstrated in a directed evolution experiment. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.  相似文献   

4.
We report a transposase gene (tnpA) upstream of the opdA phosphotriesterase gene of Agrobacterium radiobacter P230, as well as inverted repeats indicative of insertion sequences, flanking the two genes. Both the tnpA gene and the inverted repeats resemble the Tn610 transposon from Mycobacterium fortuitum. Two additional putative open reading frames separate opdA and tnpA with inferred translation products with similarity to two proteins encoded on the Geobacillus stearothermophilus IS5376 transposon. To test the proposition that these genes were contained on a transposon, an artificial composite transposon was constructed. This artificial transposon was then delivered into Escherichia coli DH10beta cells. Transposition was demonstrated by the presence of opdA on the E. coli chromosome and confirmation of insertion by inverse polymerase chain reaction. The data presented suggest a possible role of transposition in the distribution of the opd/opdA genes across a wide range of soil bacteria.  相似文献   

5.
I.G. Tremmel  E. Weis 《BBA》2007,1767(5):353-361
The diffusion of plastoquinol and its binding to the Qo site of the cyt bf complex in the course of photosynthetic electron transport was studied by following the sigmoidal flash-induced re-reduction kinetics of P700 after previous oxidation of the intersystem electron carriers. The data resulting from these experiments were matched with a simulation of electron transport using Monte Carlo techniques. The simulation was able to account for the experimental observations. Two different extreme cases of reaction mechanism at the Qo site were compared: a diffusion limited collisional mechanism and a non-diffusion limited tight binding mechanism. Assuming a tight binding mechanism led to best matches due to the high protein density in thylakoids. The varied parameters resulted in values well within the range of published data. The results emphasise the importance of structural characteristics of thylakoids in models of electron transport.  相似文献   

6.
A Pseudomonas monteilli strain (designated C11) that uses the phosphotriester coroxon as its sole phosphorus source has been isolated. Native PAGE and activity staining identified a single isozyme with significant phosphotriesterase activity in the soluble fraction of the cell. This phosphotriesterase could hydrolyse both coumaphos and coroxon. The hydrolysis product of coroxon, diethylphosphate, and the thion analogue, coumaphos, could not serve as phosphorus sources when added to the growth medium. The majority of the phosphotriesterase and phosphatase activity was contained in the soluble fraction of the cell. Phosphatase activity was inhibited by vanadate as well as by dialysis against the metal chelator, EDTA. Phosphotriesterase activity was not affected by either vanadate or dialysis with EDTA or 1,10-phenanthroline. Phosphotriesterase activity was regulated by the amounts of both phosphate and coroxon in the medium, whereas total phosphatase activity was regulated by phosphate but not coroxon. A lack of hybridisation using a probe against the opd (organophosphate degradation) gene encoding a phosphotriesterase from Flavobacterium sp. ATCC27551 against bulk DNA from P. monteilli C11 suggested that this strain does not contain opd. The work presented here indicates the presence of a novel phosphotriesterase in P. monteilli C11.  相似文献   

7.
In this work, a short compilation is presented on heterogeneously catalyzed hydrogenations carried out in near‐critical fluids. Reactions carried out in supercritical fluids, catalyzed by supported Pd, Ni or Cu, are considered as green processes in view of their negligible impact on the environment. A number of technologies are already available for clean hydrogenations, mostly performed in carbon dioxide as a dense solvent in continuous reactors. However, propane and other lower alkane solvents can perform as well as carbon dioxide but at much lower pressures. We review their behaviors in this paper in terms of observed reaction rates, space velocities, selectivities and apparent kinetic constants. In the case of vegetable oils, data are available on the effect of pressure and reaction conditions on the selectivity toward the preferred cis‐isomer during linoleic hydrogenation.  相似文献   

8.
MnCl2 was partially effective as a substitute for MgCl2 in activating the K+-dependent phosphatase reaction catalyzed by a purified (Na+ + K+)-ATPase enzyme preparation from canine kidney medulla, the maximal velocity attainable being one-fourth that with MgCl2. Estimates of the concentration of free Mn2+ available when the reaction was half-maximally stimulated lie in the range of the single high-affinity divalent cation site previously identified (Grisham, C.M. and Mildvan, A.S. (1974) J. Biol. Chem. 249, 3187–3197). MnCl2 competed with MgCl2 as activator of the phosphatase reaction, again consistent with action through a single site. However, with MnCl2 appreciable ouabaininhibitable phosphatase activity occurred in the absence of added KCl, and the apparent affinities for K+ as activator of the reaction and for Na+ as inhibitor were both decreased. For the (Na+ + K+)-ATPase reaction substituting MnCl2 for MgCl2 was also partially effective, but no stimulation in the absence of added KCl, in either the absence or presence of NaCl, was detectable. Moreover, the apparent affinity for K+ was increased by the substitution, although that for Na+ was decreased as in the phosphatase reaction. Substituting MnCl2 also altered the sensitivity to inhibitors. For both reactions the inhibition by ouabain and by vanadate was increased, as was binding of [48V]-vanadate to the enzyme; furthermore, binding in the presence of MnCl2 was, unlike that with MgCl2, insensitive to KCl and NaCl. Inhibition of the phosphatase reaction by ATP was decreased with 1 mM but not 10 mM KCl. Finally, inhibition of the (Na+ + K+)-ATPase reaction by Triton X-100 was increased, but that by dimethylsulfoxide decreased after such substitution.  相似文献   

9.
10.
Phosphotriesterase homology protein (PHP) is a member of a recently discovered family of proteins related to phosphotriesterase. Phosphotriesterase is a hydrolytic, bacterial enzyme with unusual substrate specificity for synthetic organophosphate triesters, common constituents of chemical warfare agents and agricultural pesticides. PHP may belong to the family of proteins from which phosphotriesterase evolved. The PHP gene from the thermophilic bacterium Geobacillus caldoxylosilyticus TK4 was cloned and overexpressed in Escherichia coli with 6×His tag in the N-terminal. The recombinant protein was purified with nickel affinity chromatography and characterized in detail. The enzyme did not have any activity against paraoxon. The highest activities were observed with p-nitrophenyl acetate (pNPA) and p-nitrophenyl butyrate. pH and temperature optima were determined as 8.0 and 50 °C, respectively, with pNPA. The enzyme activity was not largely affected by the incubation of the enzyme at 50 °C in the different buffer solutions (pHs between 3.0 and 9.0) for 7 days. After the incubation at 90 °C for 7 days, G. caldoxylosilyticus TK4 PHP retained 62% of its original activity. The enzyme was also resistant to some metal ions and organic solvents. These results suggest that this is the first reported PHP having an extremely pH- and thermo-stable esterase activity.  相似文献   

11.
Ultrasound-biophysics mechanisms   总被引:1,自引:0,他引:1  
Ultrasonic biophysics is the study of mechanisms responsible for how ultrasound and biological materials interact. Ultrasound-induced bioeffect or risk studies focus on issues related to the effects of ultrasound on biological materials. On the other hand, when biological materials affect the ultrasonic wave, this can be viewed as the basis for diagnostic ultrasound. Thus, an understanding of the interaction of ultrasound with tissue provides the scientific basis for image production and risk assessment. Relative to the bioeffect or risk studies, that is, the biophysical mechanisms by which ultrasound affects biological materials, ultrasound-induced bioeffects are generally separated into thermal and non-thermal mechanisms. Ultrasonic dosimetry is concerned with the quantitative determination of ultrasonic energy interaction with biological materials.

Whenever ultrasonic energy is propagated into an attenuating material such as tissue, the amplitude of the wave decreases with distance. This attenuation is due to either absorption or scattering. Absorption is a mechanism that represents that portion of ultrasonic wave that is converted into heat, and scattering can be thought of as that portion of the wave, which changes direction. Because the medium can absorb energy to produce heat, a temperature rise may occur as long as the rate of heat production is greater than the rate of heat removal. Current interest with thermally mediated ultrasound-induced bioeffects has focused on the thermal isoeffect concept. The non-thermal mechanism that has received the most attention is acoustically generated cavitation wherein ultrasonic energy by cavitation bubbles is concentrated. Acoustic cavitation, in a broad sense, refers to ultrasonically induced bubble activity occurring in a biological material that contains pre-existing gaseous inclusions. Cavitation-related mechanisms include radiation force, microstreaming, shock waves, free radicals, microjets and strain. It is more challenging to deduce the causes of mechanical effects in tissues that do not contain gas bodies. These ultrasonic biophysics mechanisms will be discussed in the context of diagnostic ultrasound exposure risk concerns.  相似文献   


12.
Utilization of proton transfer in catalysis, which is well known in the mechanisms of protein enzymes, has been described only relatively recently for RNA enzymes. In this article, we present a current understanding of proton transfer by nucleic acids. Rate enhancement and specificity conferred by general acid-base catalysis are discussed. We also present possibilities for electrostatic catalysis from general acids and bases as well as cationic base pairs. The microenvironments of a large RNA provide the possibility of histidine-like pK(a)s for proton transfer, as well as lysine- and arginine-like pK(a)s for electrostatic catalysis. Discussion on proton transfer focuses on the hepatitis delta virus (HDV) and hairpin ribozymes, with select examples drawn from the protein literature. Discussion on electrostatic catalysis also draws on these two ribozymes, and a postulate for electrostatic catalysis by a cationic base pair in the mechanism of peptidyl transfer in the ribosome is presented. We also provide a perspective on possibilities for phosphoryl transfer mechanisms involving phosphorane intermediates and unusual tautomeric forms of the bases. Lastly, a distinction is made between ground state and "transition state" pK(a)s. We favor a model in which changes in pH lead to changes in the distribution of reactive and nonreactive ionizations of the ribozyme molecules in the ground state, and therefore suggest that "pK(a) changes in the transition state" do not provide an acceptable explanation for observed pH-rate profiles.  相似文献   

13.
Catalytic mechanisms and regulation of lignin peroxidase.   总被引:3,自引:0,他引:3  
Lignin peroxidase (LiP) is a fungal haemoprotein similar to the lignin-synthesizing plant peroxidases, but it has a higher oxidation potential and oxidizes dimethoxylated aromatic compounds to radical cations. It catalyses the degradation of lignin models but in vitro the outcome is net lignin polymerization. LiP oxidizes veratryl alcohol to radical cations which are proposed to act by charge transfer to mediate in the oxidation of lignin. Phenolic compounds are, however, preferentially oxidized, but transiently inactivate the enzyme. Analysis of the catalytic cycle of LiP shows that in the presence of veratryl alcohol the steady-state turnover intermediate is Compound II. We propose that veratryl alcohol is oxidized by the enzyme intermediate Compound I to a radical cation which now participates in charge-transfer reactions with either veratryl alcohol or another reductant, when present. Reduction of Compound II to native state may involve a radical product of veratryl alcohol or radical product of charge transfer. Phenoxy radicals, by contrast, cannot engage in charge-transfer reactions and reaction of Compound II with H2O2 ensues to form the peroxidatically inactive intermediate, Compound III. Regulation of LiP activity by phenolic compounds suggests feedback control, since many of the products of lignin degradation are phenolic. Such control would lower the concentration of phenolics relative to oxygen and favour degradative ring-opening reactions.  相似文献   

14.
The reduced lacunary polyoxotungstate, [PW11O39]8−, reacts with the .CH2CH(OH)CH3 and .CH2C(CH3)2OH radicals via a mechanism involving β-hydroxide elimination to yield propene and 2-methyl propene respectively, and [PW11O39]7−. [PW11O39]8− is also oxidized by methyl radicals in a reaction which yields methane as the major product. It is proposed that the reactions proceed via the formation of short lived transients with W-C σ bonds.  相似文献   

15.
-2-Haloacid dehalogenase catalyzes the hydrolytic dehalogenation of -2-haloalkanoic acids to produce the corresponding -2-hydroxyalkanoic acids. Asp10 of -2-haloacid dehalogenase from Pseudomonas sp. YL nucleophilically attacks the α-carbon atom of the substrate to form an ester intermediate, which is subsequently hydrolyzed by an activated water molecule. We previously showed that the replacement of Thr14, Arg41, Ser118, Lys151, Tyr157, Ser175, Asn177, and Asp180 causes significant loss in the enzyme activity, indicating the involvement of these residues in catalysis. In the present study, we tried to determine which process these residues are involved in by monitoring the formation of the ester intermediate by measuring the molecular masses of the mutant enzymes using ionspray mass spectrometry. When the wild-type enzyme and the T14A, S118D, K151R, Y157F, S175A, and N177D mutant enzymes were mixed with the substrate, the ester intermediate was immediately produced. In contrast, the R41K, D180N, and D180A mutants formed the intermediate much more slowly than the wild-type enzyme, indicating that Arg41 and Asp180 participate in the formation of the ester intermediate. This study presents a new method to analyze the roles of amino acid residues in catalysis.  相似文献   

16.
17.
A framework for whole-cell mathematical modeling   总被引:4,自引:0,他引:4  
The default framework for modeling biochemical processes is that of a constant-volume reactor operating under steady-state conditions. This is satisfactory for many applications, but not for modeling growth and division of cells. In this study, a whole-cell modeling framework is developed that assumes expanding volumes and a cell-division cycle. A spherical newborn cell is designed to grow in volume during the growth phase of the cycle. After 80% of the cycle period, the cell begins to divide by constricting about its equator, ultimately affording two spherical cells with total volume equal to twice that of the original. The cell is partitioned into two regions or volumes, namely the cytoplasm (Vcyt) and membrane (Vmem), with molecular components present in each. Both volumes change during the cell cycle; Vcyt changes in response to osmotic pressure changes as nutrients enter the cell from the environment, while Vmem changes in response to this osmotic pressure effect such that membrane thickness remains invariant. The two volumes change at different rates; in most cases, this imposes periodic or oscillatory behavior on all components within the cell. Since the framework itself rather than a particular set of reactions and components is responsible for this behavior, it should be possible to model various biochemical processes within it, affording stable periodic solutions without requiring that the biochemical process itself generates oscillations as an inherent feature. Given that these processes naturally occur in growing and dividing cells, it is reasonable to conclude that the dynamics of component concentrations will be more realistic than when modeled within constant-volume and/or steady-state frameworks. This approach is illustrated using a symbolic whole cell model.  相似文献   

18.
Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a binuclear metallohydrolase that catalyzes the breakdown of a broad range of phosphate ester substrates, and it is of interest for its potential application in the destruction of organophosphate nerve agents and pesticides. The reaction mechanism of GpdQ has been proposed to involve a nucleophilic attack by a terminally bound hydroxide molecule. The hydroxide species bridging the two metal ions is suggested to activate the nucleophile, thus favoring a sequential rather than a processive mechanism of action. Here, the hydrolysis of the two ester bonds in the substrate bis(para-nitrophenyl) phosphate (bpNPP) is probed using 31P NMR. The kinetic rates measured compare well with those determined spectrophotometrically. Furthermore, the data indicate that the diester bonds are cleaved in two separate (non-processive) reactions, indicating that only a single nucleophile (the terminal hydroxide molecule) is likely to be employed as a nucleophile for GpdQ.  相似文献   

19.
Summary Cells possess extraordinary powers to organize their molecular processes not only to maintain a cell in a given steady state but also to recognize that state during differentiation. Regulation of these organizational forces appears to be under the control of chemical factors, and a hormonal concept of regulation has evolved. Hormones have been considered to act by reacting with a specific target site. This may be part of their mode of action, but I would like to suggest that a hormone enters and becomes part of a total molecular resonance system. In so doing, the entire molecular system of the cell is modified. Of the known plant hormones, the cytokinins, because of their role in experimentally induced cell division and differentiation, serve as a probe of hormonal involvement in differentiation. Cultured somatic cells of tobacco plants can be induced to undergo differentiation by addition of cytokinin and auxin to the medium. Studies of the cytokinin hormones show a series of diverse molecular involvements. The archetype cytokinin, N6-(Δ2-isopentenyl) adenosine (i6Ado), occurs in some molecular species of tRNA where it plays a vital role in the codon-anticodon interaction of tRNA and m-RNA. i6Ado under-goes extensive metabolism in the tobacco tissue. It is either degraded to adenosine or converted to derivatives that possess biological activity. It is perhaps, therefore, more correct to consider the hormone function as being derived from this total metabolic web. The normal somatic cells of tobacco cultures spontaneously change occasionally into an autonomous form that requires no external growth factors. This line of cells synthesizes i6Ado. The metabolic web of the hormone-dependent strain can be perturbed by added auxin but such is not the case in the autonomous strain. These data provide some insight into the altered state of cytokinin activity in which a cell line changes into an autonomous form. Curiously, in become independent of the requirement for exogenous cytokinin, the autonomous tissue becomes sensitive to added cytokinin. i6Ado also inhibits the growth of lines of mammalian cancer cells grown in culture. Presented in the formal symposium on Information Transfer in Eukaryotic Cells, at the 26th Annual Meeting of the Tissue Culture Association, Montreal, Quebec, June 2–5, 1975.  相似文献   

20.
小型核酶的结构和催化机理   总被引:4,自引:1,他引:4  
自然界存在的小型核酶主要有锤头型核酶、发夹型核酶、肝炎δ病毒(HDV)核酶和VS核酶.锤头型核酶由3个短螺旋和1个广义保守的连接序列组成;发夹型核酶的催化中心由两个肩并肩挨着的区域构成;HDV核酶折叠成包含五个螺旋臂(P1~P4)的双结结构;VS核酶由五个螺旋结构组成,这些螺旋结构通过两个连接域连接起来.小型核酶的催化机理与其分子结构密切相关.金属离子或特定碱基都可作为催化反应的关键成分.锤头型核酶的催化必须有金属离子(尤其是二价金属离子)参与,而发夹型核酶则完全不需要金属离子.基因组HDV核酶进行催化时要有金属离子和特定碱基互相配合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号