首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac oxidative ATP generation is finely tuned to match several-fold increases in energy demand. Calcium has been proposed to play a role in the activation of ATP production via PKA phosphorylation in response to intramitochondrial cAMP generation. We evaluated the effect of cAMP, its membrane permeable analogs (dibutyryl-cAMP, 8-bromo-cAMP), and the PKA inhibitor H89 on respiration of isolated pig heart mitochondria. cAMP analogs did not stimulate State 3 respiration of Ca2 +-depleted mitochondria (82.2 ± 3.6% of control), in contrast to the 2-fold activation induced by 0.95 μM free Ca2 +, which was unaffected by H89. Using fluorescence and integrating sphere spectroscopy, we determined that Ca2 + increased the reduction of NADH (8%), and of cytochromes bH (3%), c1 (3%), c (4%), and a (2%), together with a doubling of conductances for Complex I + III and Complex IV. None of these changes were induced by cAMP analogs nor abolished by H89. In Ca2 +-undepleted mitochondria, we observed only slight changes in State 3 respiration rates upon addition of 50 μM cAMP (85 ± 9.9%), dibutyryl-cAMP (80.1 ± 5.2%), 8-bromo-cAMP (88.6 ± 3.3%), or 1 μM H89 (89.7 ± 19.9%) with respect to controls. Similar results were obtained when measuring respiration in heart homogenates. Addition of exogenous PKA with dibutyryl-cAMP or the constitutively active catalytic subunit of PKA to isolated mitochondria decreased State 3 respiration by only 5–15%. These functional studies suggest that alterations in mitochondrial cAMP and PKA activity do not contribute significantly to the acute Ca2 + stimulation of oxidative phosphorylation.  相似文献   

2.
Dynamic features of Ca2+ interactions with transport and regulatory sites control the Ca2+-fluxes in mammalian Na+/Ca2+(NCX) exchangers bearing the Ca2+-binding regulatory domains on the cytosolic 5L6 loop. The crystal structure of Methanococcus jannaschii NCX (NCX_Mj) may serve as a template for studying ion-transport mechanisms since NCX_Mj does not contain the regulatory domains. The turnover rate of Na+/Ca2+ exchange (kcat = 0.5 ± 0.2s−1) in WT–NCX_Mj is 103–104 times slower than in mammalian NCX. In NCX_Mj, the intrinsic equilibrium (Kint) for bidirectional Ca2+ movements (defined as the ratio between the cytosolic and extracellular Km of Ca2+/Ca2+ exchange) is asymmetric, Kint = 0.15 ± 0.5. Therefore, the Ca2+ movement from the cytosol to the extracellular side is ∼7-times faster than in the opposite direction, thereby representing a stabilization of outward-facing (extracellular) access. This intrinsic asymmetry accounts for observed differences in the cytosolic and extracellulr Km values having a physiological relevance. Bidirectional Ca2+ movements are also asymmetric in mammalian NCX. Thus, the stabilization of the outward-facing access along the transport cycle is a common feature among NCX orthologs despite huge differences in the ion-transport kinetics. Elongation of the cytosolic 5L6 loop in NCX_Mj by 8 or 14 residues accelerates the ion transport rates (kcat) ∼10 fold, while increasing the Kint values 100–250-fold (Kint = 15–35). Therefore, 5L6 controls both the intrinsic equilibrium and rates of bidirectional Ca2+ movements in NCX proteins. Some additional structural elements may shape the kinetic variances among phylogenetically distant NCX variants, although the intrinsic asymmetry (Kint) of bidirectional Ca2+ movements seems to be comparable among evolutionary diverged NCX variants.  相似文献   

3.
HlyA from Escherichia coli is a member of the repeats in toxin (RTX) protein family, produced by a wide range of Gram-negative bacteria and secreted by a dedicated Type 1 Secretion System (T1SS). RTX proteins are thought to be secreted in an unfolded conformation and to fold upon secretion by Ca2 + binding. However, the exact mechanism of secretion, ion binding and folding to the correct native state remains largely unknown. In this study we provide an easy protocol for high-level pro-HlyA purification from E. coli. Equilibrium folding studies, using intrinsic tryptophan fluorescence, revealed the well-known fact that Ca2 + is essential for stability as well as correct folding of the whole protein. In the absence of Ca2 +, pro-HlyA adopts a non-native conformation. Such molecules could however be rescued by Ca2 + addition, indicating that these are not dead-end species and that Ca2 + drives pro-HlyA folding. More importantly, pro-HlyA unfolded via a two-state mechanism, whereas folding was a three-state process. The latter is indicative of the presence of a stable folding intermediate. Analysis of deletion and Trp mutants revealed that the first folding transition, at 6–7 M urea, relates to Ca2 + dependent structural changes at the extreme C-terminus of pro-HlyA, sensed exclusively by Trp914. Since all Trp residues of HlyA are located outside the RTX domain, our results demonstrate that Ca2 + induced folding is not restricted to the RTX domain. Taken together, Ca2 + binding to the pro-HlyA RTX domain is required to drive the folding of the entire protein to its native conformation.  相似文献   

4.
The Ca2+-sensitive regulatory switch of cardiac muscle is a paradigmatic example of protein assemblies that communicate ligand binding through allosteric change. The switch is a dimeric complex of troponin C (TnC), an allosteric sensor for Ca2+, and troponin I (TnI), an allosteric reporter. Time-resolved equilibrium Förster resonance energy transfer (FRET) measurements suggest that the switch activates in two steps: a TnI-independent Ca2+-priming step followed by TnI-dependent opening. To resolve the mechanistic role of TnI in activation we performed stopped-flow FRET measurements of activation after rapid addition of a lacking component (Ca2+ or TnI) and deactivation after rapid chelation of Ca2+. Time-resolved measurements, stopped-flow measurements, and Ca2+-titration measurements were globally analyzed in terms of a new quantitative dynamic model of TnC-TnI allostery. The analysis provided a mesoscopic parameterization of distance changes, free energy changes, and transition rates among the accessible coarse-grained states of the system. The results reveal that 1), the Ca2+-induced priming step, which precedes opening, is the rate-limiting step in activation; 2), closing is the rate-limiting step in de-activation; 3), TnI induces opening; 4), there is an incompletely deactivated population when regulatory Ca2+ is not bound, which generates an accessory pathway of activation; and 5), there is incomplete activation by Ca2+—when regulatory Ca2+ is bound, a 3:2 mixture of dynamically interconverting open (active) and primed-closed (partially active) conformers is observed (15°C). Temperature-dependent stopped-flow FRET experiments provide a near complete thermokinetic parameterization of opening: the enthalpy change (ΔH = −33.4 kJ/mol), entropy change (ΔS = −0.110 kJ/mol/K), heat capacity change (ΔCp = −7.6 kJ/mol/K), the enthalpy of activation (δ = 10.6 kJ/mol) and the effective barrier crossing attempt frequency (νadj = 1.8 × 104 s−1).  相似文献   

5.
A galactose-specific seed lectin from Spatholobous parviflorus (SPL) has been purified, crystallized and its X-ray structure solved. It is the first lectin purified and crystallized from the genus Spatholobus (family: Fabaceae). The crystals belong to the space group P1, with a = 60.792 Å, b = 60.998 Å, c = 78.179 Å, α = 78.68°, β = 88.62°, γ = 104.32°. The data were collected at 2.04 Å resolution under cryocondition, on a MAR image-plate detector system, mounted on a rotating anode X-ray generator. The coordinates of Dolichos biflorus lectin (1lu1) were successfully used for the structure solution by molecular replacement method. The primary structure of the SPL was not known earlier and it was unambiguously visible in the electron density. S. parviflorus lectin is a hetero-dimeric-tetramer with two alpha and two beta chains of 251 and 239 residues respectively. SPL has two metal ions, Ca2+ and Mn2+, bound to a loop region of each chain. The SPL monomers are in jelly roll form.  相似文献   

6.
During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca2 +) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell–APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca2 + signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca2 + from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca2 + release-activated Ca2 + (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca2 + across the plasma membrane in a process termed store-operated Ca2 + entry (SOCE). Because CRAC channels are themselves inhibited by Ca2 + ions, additional factors are suggested to enable the sustained Ca2 + influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca2 + evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca2 + flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca2 + signaling by controlling the spatial and temporal distribution of Ca2 + sources and sinks, modulating TCR-dependent Ca2 + signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

7.
Electrochromic styryl dyes were used to investigate mutually antagonistic effects of Ca2+ and H+ on binding of the other ion in the E1 and P-E2 states of the SR Ca-ATPase. On the cytoplasmic side of the protein in the absence of Mg2+ a strictly competitive binding sequence, H2E1?HE1?E1?CaE1?Ca2E1, was found with two Ca2+ ions bound cooperatively. The apparent equilibrium dissociation constants were in the order of K1/2(2 Ca) = 34 nM, K1/2(H) = 1 nM and K1/2(H2) = 1.32 μM. Up to 2 Mg2+ ions were also able to enter the binding sites electrogenically and to compete with the transported substrate ions (K1/2(Mg) = 165 μM, K1/2(Mg2) = 7.4 mM). In the P-E2 state, with binding sites facing the lumen of the sarcoplasmatic reticulum, the measured concentration dependence of Ca2+ and H+ binding could be described satisfactorily only with a branched reaction scheme in which a mixed state, P-E2CaH, exists. From numerical simulations, equilibrium dissociation constants could be determined for Ca2+ (0.4 mM and 25 mM) and H+ (2 μM and 10 μM). These simulations reproduced all observed antagonistic concentration dependences. The comparison of the dielectric ion binding in the E1 and P-E2 conformations indicates that the transition between both conformations is accompanied by a shift of their (dielectric) position.  相似文献   

8.
Intrinsically disordered domains have been reported to play important roles in signal transduction networks by introducing cooperativity into protein–protein interactions. Unlike intrinsically disordered domains that become ordered upon binding, the EF-SAM domain in the stromal interaction molecule (STIM) 1 is distinct in that it is ordered in the monomeric state and partially unfolded in its oligomeric state, with the population of the two states depending on the local Ca2 + concentration. The oligomerization of STIM1, which triggers extracellular Ca2 + influx, exhibits cooperativity with respect to the local endoplasmic reticulum Ca2 + concentration. Although the physiological importance of the oligomerization reaction is well established, the mechanism of the observed cooperativity is not known. Here, we examine the response of the STIM1 EF-SAM domain to changes in Ca2 + concentration using mathematical modeling based on in vitro experiments. We find that the EF-SAM domain partially unfolds and dimerizes cooperatively with respect to Ca2 + concentration, with Hill coefficients and half-maximal activation concentrations very close to the values observed in vivo for STIM1 redistribution and extracellular Ca2 + influx. Our mathematical model of the dimerization reaction agrees quantitatively with our analytical ultracentrifugation-based measurements and previously published free energies of unfolding. A simple interpretation of these results is that Ca2 + loss effectively acts as a denaturant, enabling cooperative dimerization and robust signal transduction. We present a structural model of the Ca2 +-unbound EF-SAM domain that is consistent with a wide range of evidence, including resistance to proteolytic cleavage of the putative dimerization portion.  相似文献   

9.
The thermal sensitivity of metabolic performance in vertebrates requires a better understanding of the temperature sensitivity of cardiac function. The cardiac sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) is vital for excitation–contraction (E–C) coupling and intracellular Ca2+ homeostasis in heart cells. To better understand the thermal dependency of cardiac output in vertebrates, we present comparative analyses of the thermal kinetics properties of SERCA2 from ectothermic and endothermic vertebrates. We directly compare SR ventricular microsomal preparations using similar experimental conditions from sarcoplasmic reticulum isolated from cardiac tissues of mammals and fish. The experiments were designed to delineate the thermal sensitivity of SERCA2 and its role in thermal sensitivity Ca2+ uptake and E–C coupling. Ca2+ transport in the microsomal SR fractions from rabbit and bigeye tuna (Thunnus obesus) ventricles were temperature dependent. In contrast, ventricular SR preparations from coho salmon (Onchorhychus kisutch) were less temperature dependent and cold tolerant, displaying Ca2+ uptake as low as 5 °C. As a consequence, the Q10 values in coho salmon were low over a range of different temperature intervals. Maximal Ca2+ transport activity for each species occurred in a different temperature range, indicating species-specific thermal preferences for SERCA2 activity. The mammalian enzyme displayed maximal Ca2+ uptake activity at 35 °C, whereas the fish (tuna and salmon) had maximal activity at 30 °C. At 35 °C, the rate of Ca2+ uptake catalyzed by the bigeye tuna SERCA2 decreased, but not the rate of ATP hydrolysis. In contrast, the salmon SERCA2 enzyme lost its activity at 35 °C, and ATP hydrolysis was also impaired. We hypothesize that SERCA2 catalysis is optimized for species-specific temperatures experienced in natural habitats and that cardiac aerobic scope is limited when excitation–contraction coupling is impaired at low or high temperatures due to loss of SERCA2 enzymatic function.  相似文献   

10.

Aims

Accumulation of advanced glycation endproduct (AGE) contributes to diabetic complication including diabetic cardiomyopathy although the precise underlying mechanism still remains elusive. Recent evidence depicted a pivotal role of protein kinase C (PKC) in diabetic complications. To this end, this study was designed to examine if PKCβII contributes to AGE-induced cardiomyocyte contractile and intracellular Ca2 + aberrations.

Main methods

Adult rat cardiomyocytes were incubated with methylglyoxal-AGE (MG-AGE) in the absence or presence of the PKCβII inhibitor LY333531 for 12 h. Contractile and intracellular Ca2 + properties were assessed using an IonOptix system including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), rise in intracellular Ca2 + Fura-2 fluorescence intensity and intracellular Ca2 + decay. Oxidative stress, O2 production and mitochondrial integrity were examined using TBARS, fluorescence imaging, aconitase activity and Western blotting.

Key findings

MG-AGE compromised contractile and intracellular Ca2 + properties including reduced PS, ± dL/dt, prolonged TPS and TR90, decreased electrically stimulated rise in intracellular Ca2 + and delayed intracellular Ca2 + clearance, the effects of which were ablated by the PKCβII inhibitor LY333531. Inhibition of PKCβII rescued MG-AGE-induced oxidative stress, O2 generation, cell death, apoptosis and mitochondrial injury (reduced aconitase activity, UCP-2 and PGC-1α). In vitro studies revealed that PKCβII inhibition-induced beneficial effects were replicated by the NADPH oxidase inhibitor apocynin and were mitigated by the mitochondrial uncoupler FCCP.

Significance

These findings implicated the therapeutic potential of specific inhibition of PKCβII isoform in the management of AGE accumulation-induced myopathic anomalies.  相似文献   

11.
12.
Otacilio C. Moreira 《BBA》2005,1708(3):411-419
The bidentate complex of ATP with Cr3+, CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca2+-ATPase and the Na+,K+-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca2+ and Na+, respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca2+-ATPase. The complex inhibited with similar efficiency the Ca2+-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T1/2 = 30 min at 37 °C) with a Ki = 28 ± 9 μM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg2+ but unaltered when Ca2+ was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca2+ occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La3+ with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca2+ at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca2+ promoted by the plasma membrane Ca2+-ATPase goes through an enzymatic phospho-intermediate that maintains Ca2+ ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.  相似文献   

13.

Background

A number of studies assessed the association of − 589C/T polymorphism in the promoter region of interleukin-4 (IL-4) with asthma in different populations. However, the results were contradictory. A meta-analysis was conducted to investigate the association between polymorphism in the IL-4 and asthma susceptibility.

Methods

Databases including Pubmed, EMBASE, Wanfang Database, China National Knowledge Infrastructure (CNKI) and Weipu Database were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations.

Results

Thirty-four studies involving 7345 cases and 7819 controls were included. Overall, significant association between − 589C/T polymorphism and asthma was observed for TT + CT vs. CC (OR = 1.26; 95% CI 1.12–1.42; P = 0.0001; I2 = 26%). In the subgroup analysis by ethnicity, significant associations were found among Asians (OR = 1.36; 95% CI 1.07–1.73; P = 0.01; I2 = 0%) and Caucasians (OR = 1.30; 95% CI 1.09–1.54; P = 0.004; I2 = 53%) but not among African Americans (OR = 1.20; 95% CI 0.72–2.00; P = 0.48; I2 = 48%). In the subgroup analysis by atopic status, no significant association was found among atopic asthma patients (OR = 1.20; 95% CI 0.92–1.34; P = 0.27; I2 = 6%) and non-atopic asthma patients (OR = 0.97; 95% CI 0.73–1.28; P = 0.81; I2 = 0%).

Conclusions

This meta-analysis suggested that the IL-4 − 589C/T polymorphism was a risk factor of asthma.  相似文献   

14.
15.
16.

Background

These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans.

Methodology and principal findings

We detected the baicalin inhibition effects on three isotope-labeled precursors of 3H-UdR, 3H-TdR and 3H-leucine incorporation into C. albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca2+–Mg2+ ATPase, cytosolic Ca2+ concentration, the cell cycle and apoptosis, as well as the ultrastructure of C.albicans were also tested. We found that baicalin inhibited 3H-UdR, 3H-TdR and 3H-leucine incorporation into C.albicans (P < 0.005). The activities of the SDH and Ca2+–Mg2+ ATPase of C.albicans in baicalin groups were lower than those in control group (P < 0.05). Ca2+ concentrations of C. albicans in baicalin groups were much higher than those in control group (P < 0.05). The ratio of C.albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P < 0.01). There were a significant differences in the apoptosis rate of C.albicans between baicalin and control groups (P < 0.01). After 12–48 h incubation with baicalin (1 mg/ml), C. albicans shown to be markedly damaged under transmission electron micrographs.

Innovation and significance

Baicalin can increase the apoptosis rate of C. albicans. These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca2+–Mg2+ ATPase, increasing cytosolic Ca2+ content and damaging the ultrastructure of C. albicans.  相似文献   

17.
Cytochromes c6 and f react by three et mechanisms under similar conditions. We report temperature and viscosity effects on the protein docking and kinetics of 3Zncyt c6 + cyt f(III) → Zncyt c6+ + cyt f(II). At 0.5-40.0 °C, this reaction occurs within the persistent (associated) diprotein complex with the rate constant kpr and within the transient (collision) complex with the rate constant ktr. The viscosity independence of kpr, the donor-acceptor coupling Hab = (0.5 ± 0.1) cm−1, and reorganizational energy λ = (2.14 ± 0.02) eV indicate true et within the persistent complex. The viscosity dependence of ktr and a break at 30 °C in the Eyring plot for ktr reveal mechanisms within the transient complex that are reversibly switched by temperature change. Kramers protein friction parameters differ much for the reactions below (σ = 0.3 ± 0.1, δ = 0.85 ± 0.07) and above (σ = 4.0 ± 0.9, δ = 0.40 ± 0.06) 30 °C. The transient complex(es) undergo(es) coupled et below ca. 30 °C and gated et above ca. 30 °C. Brownian dynamics simulations reveal two broad, dynamic ensembles of configurations “bridged” by few intermediate configurations through which the interconversion presumably occurs.  相似文献   

18.
Marine brachyuran and anomuran crustaceans are completely absent from the extremely cold (− 1.8 °C) Antarctic continental shelf, but caridean shrimps are abundant. This has at least partly been attributed to low capacities for magnesium excretion in brachyuran and anomuran lithodid crabs ([Mg2+]HL = 20-50 mmol L− 1) compared to caridean shrimp species ([Mg2+]HL = 5-12 mmol L− 1). Magnesium has an anaesthetizing effect and reduces cold tolerance and activity of adult brachyuran crabs. We investigated whether the capacity for magnesium regulation is a factor that influences temperature-dependent activity of early ontogenetic stages of the Sub-Antarctic lithodid crab Paralomis granulosa. Ion composition (Na+, Mg2+, Ca2+, Cl, SO42−) was measured in haemolymph withdrawn from larval stages, the first and second juvenile instars (crabs I and II) and adult males and females. Magnesium excretion improved during ontogeny, but haemolymph sulphate concentration was lowest in the zoeal stages. Neither haemolymph magnesium concentrations nor Ca2+:Mg2+ ratios paralleled activity levels of the life stages. Long-term (3 week) cold exposure of crab I to 1 °C caused a significant rise of haemolymph sulphate concentration and a decrease in magnesium and calcium concentrations compared to control temperature (9 °C). Spontaneous swimming activity of the zoeal stages was determined at 1, 4 and 9 °C in natural sea water (NSW, [Mg2+] = 51 mmol L− 1) and in sea water enriched with magnesium (NSW + Mg2+, [Mg2+] = 97 mmol L− 1). It declined significantly with temperature but only insignificantly with increased magnesium concentration. Spontaneous velocities were low, reflecting the demersal life style of the zoeae. Heart rate, scaphognathite beat rate and forced swimming activity (maxilliped beat rate, zoea I) or antennule beat rate (crab I) were investigated in response to acute temperature change (9, 6, 3, 1, − 1 °C) in NSW or NSW + Mg2+. High magnesium concentration reduced heart rates in both stages. The temperature-frequency curve of the maxilliped beat (maximum: 9.6 beats s− 1 at 6.6 °C in NSW) of zoea I was depressed and shifted towards warmer temperatures by 2 °C in NSW + Mg2+, but antennule beat rate of crab I was not affected. Magnesium may therefore influence cold tolerance of highly active larvae, but it remains questionable whether the slow-moving lithodid crabs with demersal larvae would benefit from an enhanced magnesium excretion in nature.  相似文献   

19.
VDAC1, an outer mitochondrial membrane (OMM) protein, is crucial for regulating mitochondrial metabolic and energetic functions and acts as a convergence point for various cell survival and death signals. VDAC1 is also a key player in apoptosis, involved in cytochrome c (Cyto c) release and interactions with anti-apoptotic proteins. Recently, we demonstrated that various pro-apoptotic agents induce VDAC1 oligomerization and proposed that a channel formed by VDAC1 oligomers mediates cytochrome c release. As VDAC1 transports Ca2 + across the OMM and because Ca2 + has been implicated in apoptosis induction, we addressed the relationship between cytosolic Ca2 + levels ([Ca2 +]i), VDAC1 oligomerization and apoptosis induction. We demonstrate that different apoptosis inducers elevate cytosolic Ca2 + and induce VDAC1 over-expression. Direct elevation of [Ca2 +]i by the Ca2 +-mobilizing agents A23187, ionomycin and thapsigargin also resulted in VDAC1 over-expression, VDAC1 oligomerization and apoptosis. In contrast, decreasing [Ca2 +]i using the cell-permeable Ca2 +-chelating reagent BAPTA-AM inhibited VDAC1 over-expression, VDAC1 oligomerization and apoptosis. Correlation between the increase in VDAC1 levels and oligomerization, [Ca2 +]i levels and apoptosis induction, as induced by H2O2 or As2O3, was also obtained. On the other hand, cells transfected to overexpress VDAC1 presented Ca2 +-independent VDAC1 oligomerization, cytochrome c release and apoptosis, suggesting that [Ca2 +]i elevation is not a pre-requisite for apoptosis induction when VDAC1 is over-expressed. The results suggest that Ca2 + promotes VDAC1 over-expression by an as yet unknown signaling pathway, leading to VDAC1 oligomerization, ultimately resulting in apoptosis. These findings provide a new insight into the mechanism of action of existing anti-cancer drugs involving induction of VDAC1 over-expression as a mechanism for inducing apoptosis. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau  相似文献   

20.
Cytosolic-free Ca2 + plays a crucial role in blood platelet function and is essential for thrombosis and hemostasis. Therefore, cytosolic-free Ca2 + concentration is tightly regulated in this cell. TRPC6 is expressed in platelets, and an important role for this Ca2 + channel in Ca2 + homeostasis has been reported in other cell types. The aim of this work is to study the function of TRPC6 in platelet Ca2 + homeostasis. The absence of TRPC6 resulted in an 18.73% decreased basal [Ca2 +]c in resting platelets as compared to control cells. Further analysis confirmed a similar Ca2 + accumulation in wild-type and TRPC6-deficient mice; however, passive Ca2 + leak rates from agonist-sensitive intracellular stores were significantly decreased in TRPC6-deficient platelets. Biotinylation studies indicated the presence of an intracellular TRPC6 population, and subcellular fractionation indicated their presence on endoplasmic reticulum membranes. Moreover, the presence of intracellular calcium release in platelets stimulated with 1-oleoyl-2-acetyl-sn-glycerol further suggested a functional TRPC6 population located on the intracellular membranes surrounding calcium stores. However, coimmunoprecipitation assay confirmed the absence of STIM1–TRPC6 interactions in resting conditions. This findings together with the absence of extracellular Mn2 + entry in resting wild-type platelets indicate that the plasma membrane TRPC6 fraction does not play a significant role in the maintenance of basal [Ca2 +]c in mouse platelets. Our results suggest an active participation of the intracellular TRPC6 fraction as a regulator of basal [Ca2 +]c, controlling the passive Ca2 + leak rate from agonist-sensitive intracellular Ca2 + stores in resting platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号